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ABSTRACT 

        Objective: In this study, the possible central antinociceptive activity of beta-sitosterol is investigated along 

with its association of stimulation of opioidergic, serotonergic, adrenergic, and cholinergic receptors to mice 

central analgesia because of the beta-sitosterol administration. 

        Material and Method: The beta-sitosterol was administrated to mice in various doses, such as 5, 10 and 

20 mg/kg. Then, the mice analyzed via hot-plate and tail-flick assay to investigate the possible antinociceptive 

effects of beta-sitosterol. Additionally, in order to associate the mechanism of action mechanism, 20 mg/kg of 

beta-sitosterol was intraperitoneally administered to the animal which were previously pre-treated with opioid 

antagonist naloxone (5 mg/kg), serotonin 5-HT2A/2C receptor antagonist ketanserin (1 mg/kg), serotonin 5-HT3 

receptor antagonist – ondansetron (1 mg/kg), α2-adrenoceptor antagonist yohimbine (1 mg/kg) and muscarinic 

antagonist atropine (5 mg/kg), as well as nicotinic antagonist mecamylamine (1 mg/kg). 

        Result and Discussion: The antinociceptive effect of beta-sitosterol was confirmed as dose-dependent for 

5, 10, and 20 mg/kg doses in tail-flick and hot-plate tests. It can be concluded that beta-sitosterol promotes 

central antinociception effects associated with the spinal and supraspinal mediated cholinergic and opioidergic 

modulation. 

        Keywords: Antinociception, beta-sitosterol, cholinergic receptors, opioidergic receptors 

ÖZ 

        Amaç: Bu çalışmada, farelerde beta-sitosterol uygulamasına bağlı santral analjezide opioiderjik, 

serotonerjik, adrenerjik ve kolinerjik reseptörleri ile ilişkili olası antinosiseptif aktivitesi araştırılmıştır.                   
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        Gereç ve Yöntem: Beta-sitosterol, farelere 5, 10 ve 20 mg/kg dozlarında uygulandı. Daha sonra, fareler 

beta-sitosterolün olası antinosiseptif etkilerini araştırmak için tail-flick ve hot-plate testleri ile analiz edildi. Ek 

 olarak, etki mekanizmasını değerlendirmek için, farelere, beta-sitosterol (20 mg/kg, intraperitonel) 

uygulamasından önce opioid antagonisti nalokson (5 mg/kg), serotonin 5-HT3 reseptör antagonisti ondansetron 

(1 mg/kg), serotonin 5-HT2A/2C reseptör antagonisti ketanserin (1 mg/kg), α2-adrenoseptör antagonisti yohimbin 

(1 mg/kg) ve muskarinik antagonist atropin (5 mg/kg) ve ayrıca nikotinik antagonisti mekamilamin (1 mg/kg) 

uygulandı. 

        Sonuç ve Tartışma: Beta-sitosterolün doza-bağlı antinosiseptif etkisi, tail-flick ve hot-plate testlerinde 5, 

10 ve 20 mg/kg dozlarında tespit edilmiştir. Beta-sitosterolün, spinal ve supraspinal aracılı kolinerjik ve 

opioiderjik modülasyon ile ilişkili merkezi antinosisepsiyon etkilerini teşvik ettiği sonucuna varılabilir. 

        Anahtar Kelimeler: Antinosisepsiyon, beta-sitosterol, kolinerjik reseptörler, opioiderjik reseptörler 

INTRODUCTION            

Last years, various management techniques of pain have been arisen in order to offer patients 

life quality. Such strategies include pharmacological approaches using pain relief medications, physical 

therapy, complementary therapies as meditation etc. The diagnosis of pain and the recognition of 

analgesia methods and pain management are very significant for both clinicians and emergency 

department doctors [1]. There are 4 categories of pain such as acute, nociceptive, chronic, and 

neuropathic. Nociceptive pain arouse from the neural pathways activity due to actual tissue damage or 

possible tissue-damaging stimuli [2]. Nociceptors receptors could be activated from acute noxious 

stimuli i.e. heat or cold temperatures, mechanical force, or chemical stimulation [3–5]. Thus, 

pharmacological agents presenting with antinociceptive properties are of high clinical importance. The 

application of pharmacological compounds derived from plants, is widely tested in clinical practice. 

Beta-sitosterol (BS) is a chemical compound (Figure 1) widely found in plants such as Uncaria 

species (tomentosa, guianensis) [6, 7] and vegetables i.e. rice [8], wheat [9], seeds and nuts [10] etc. BS 

has shown interesting curative properties such as anti-inflammatory, anti-viral, anti-cancer as well as 

immune boost [11–13]. The chemical structure of BS has been correlated with the structure of 

cholesterol; therefore, Tapiero et al. has reported that BS interferes with absorption of cholesterol in the 

intestines, and prevents cholesterol levels from being arisen in serum. Additionally, tumor growth 

inhibition by BS has been related with the effect of the sterol on sphingomyelin cycle and increased 

production of ceramide [14]. Other studies have included the antibacterial activity of BS [15] as well as 

its gastro- and hepatic-protective effects [16].  

 

Figure 1. Chemical Structure of beta-sitosterol 
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Most importantly, BS is reported to modulate immune function, inflammation [17], and pain 

levels through the production of inflammatory cytokines [18]. In general, the biological properties of 

BS have not been widely explored. In this study, the exploration of BS as pharmacological compound 

with antinociceptive properties is performed; mice models were administered with BS and studied for 

their behavior with the hot-plate and tail-flick assays. 

MATERIAL AND METHOD 

Chemicals and Materials 

Beta-sitosterol, tween 80, yohimbine hydrochloride, diclofenac sodium, ketanserin tartrate, 

mecamylamine hydrochloride, naloxone hydrochloride, atropine sulfate, and ondansetron were 

purchased from Sigma, Germany. Herein, the used chemical components or solvents are of analytical 

grade. If they are not, they are stated accordingly. 

Animals 

Male Balb/C mice (20–25 g) were applied as animal models. The animals were kept at İstanbul 

Medipol University, in a room with controlled temperature (22±2°C) and humidity (55–70%) at 12 h 

light/dark cycles. Poly(propylene) boxes were used to maintain the mice containing wood shavings at 

the base of the box; the animals had free access to food and filtered water. Moreover, animals spread 

equally among the groups. Two hours before starting the experiments, the mice permitted to acclimatize 

to the air-conditioned. This was taken place during the light cycle phase. The experiment performed 

between 8.00 and 12.00 a.m. and the animals only intake water during the six hours prior to the 

experimental procedures. This choice based on the assumption that animals can present food interactions 

with BS. The animal care conditions as well as research protocols were chosen according to the 

principles and guidelines from the National Institute of Health Guide for the Care and Use of Laboratory 

Animals. The protocol confirmed by the Ethical Committee of İstanbul Medipol University (2020/69). 

Drugs and pharmacological procedures 

The animals were randomly allocated to 19 groups (n=6 per group). Beta-sitosterol and 

diclofenac were dissolved in the vehicle. Diclofenac (5 mg/kg, i.p.) was administrated as the reference 

drug. In further, BS was also i.p. administered (1% Tween 80 in distilled water) at the doses of 5, 10, 

and 20 mg/kg. Moreover, intraperitoneal injections of the antagonists were chosen. The action 

mechanisms were investigated by pre-treating the mice with muscarinic receptor antagonist; Atropine 

(5 mg/kg), nicotinic receptor antagonist; Mecamylamine (1 mg/kg), serotonin 5-HT2A/2C receptor 

antagonist; Ketanserin (1 mg/kg), serotonin 5-HT3 receptor antagonist; Ondansetron (1 mg/kg), opioid 

antagonist; Naloxone (1 mg/kg), and α2-adrenoceptor antagonist; Yohimbine (1 mg/kg) at 20, 30, 30, 

30 and 15 min before the administration of BS, respectively. Before any combination studies were 

conducted, the antinociceptive effect of the antagonist agents when administered alone was examined 
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in the mouse hot-plate and tail-flick assay. Hot-plate and tail-flick tests (90 min after BS administration) 

were performed in order to measure the pain threshold. The dosages and drug administration schedules 

were chosen according to previous reports [19–21]. 

Pharmacological tests 

Hot-plate test 

A hot-plate test was applied in order to examine the antinociceptive effect of BS. The choice of 

animals for the hot-plate test was based on their response time of up to 15 s such as to thermal stress. 

The animal selection was done the previous day of the experiment. A hot-plate analgesia meter was 

utilized to measure the pain reflexes in response to thermal stimuli (Ugo Basile Instruments, Comerio, 

Italy). The mice from each party were put on the pre-heated plate (55±0.5°C). As reaction time was 

taken, the latency of licking or flicking of its hind paw or jumping upward. The 20 s were chosen as cut-

off time in order to minimize hind paw damage. Finally, the mice behavior was recorded before 

treatment and after treatment [20]. 

Tail-flick test 

The tail-flick latency was obtained using a tail-flick unit (Ugo Basile, Italy). Every animal 

settled to a certain way in order to tails project towards the nichrome wire. Moreover, the distal part of 

the tail (almost 2-3 cm lower portion of the tail) positioned upon the nichrome wire through which 

current flow set at 6 amp. The stimulus in this assay, was the radiant heat while the “tail-flick” response 

as well as “endpoint” was the immediate withdrawal of tail. In further, as “reaction time” was considered 

the time between placing the tail on heat and immediate removal of the tail. Additionally, the assay 

terminated if the latency exceeded for more than 15 s (cut-off time).  

The later formula was applied in order to calculate maximal possible effect (MPE%) according 

to the results obtained by the hot-plate and tail-flick assays [22, 23]. The maximal possible effect 

percentage ascertained by the response latency against thermal stimulus:  

MPE% = [{(Post-drug latency)−(Pre-drug latency)} / {(Cut-off time)−(Pre-drug latency)}] X100  

Statistical analysis 

The statistical analyses were performed with GraphPad Prism 7.0 software, Inc., San Diego, 

CA. The obtained data expressed as mean ± SEM. Finally, the statistical analysis of the data was 

performed via one-way ANOVA which was followed by post hoc (Tukey’s) analysis. As statistical 

significant, the p<0.05 was chosen. 

RESULT AND DISCUSSION 

Antinociceptive effect of beta-sitosterol 
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Figure 2 presents the antinociceptive effects of BS according to hot-plate and tail-flick assays. 

Accordingly, it can be seen that diclofenac used as the reference drug, significantly hindered the pain 

response in comparison with the control group. This significant inhibition of pain response was recorded 

for both hot-plate (p<0.001) and tail-flick (p<0.001) tests. Moreover, the application of BS at doses of 

20 mg/kg (p<0.05) induced a notable as well as a dose-dependent increment in the mean basal reaction 

time in hot-plate and tail-flick tests, in comparison with the control group. Consequently, the obtained 

data clearly demonstrated that administration of 20 mg/kg of BS was remarkably more efficacious than 

the application of lower doses (5, 10 mg/kg) of BS and the control group as well. 

 

 

Figure 2. Antinociceptive effects of 5, 10, and 20 mg/kg (i.p.) beta-sitosterol (BS) and 5 mg/kg 

diclofenac (i.p.) in the hot-plate (hind paw withdrawal, licking or jumping) and tail-flick assays. 

Statistically significant difference; **p<0.01, ***p<0.001 vs. control. Data are shown as mean±S.E.M. 

MPE: Maximal possible antinociceptive effect.  

 

Evaluation of the mechanism of antinociceptive activity of Beta-sitosterol 

Figure 3 reveals the reversal effect of atropin on antinociception induced by BS (20 mg/kg). 

Pre-treatment with atropin caused the reverse of the pain relief effects of the BS in the hot-plate 

(p<0.001) and the tail-flick (p<0.001) assays. 

 



J. Fac. Pharm. Ankara, 45(2): 238-252, 2021                             Şakul and Okur 243 

 

Figure 3. Effects of atropine (i.p.-5mg/kg) on the antinociception of beta-sitosterol (BS) (i.p.-20mg/kg) 

in the hot-plate (hind paw withdrawal, licking or jumping) and tail-flick assays. Statistically significant 

difference; ***p<0.001 vs. control; ###p<0.001 vs. beta-sitosterol alone. Data are shown as mean±S.E.M. 

MPE: Maximal possible antinociceptive effect.  

 

As it can be seen from Figure 4, the single administration of mecamylamine (1 mg/kg, i.p.) 

failed to show significance compared to the control group. Importantly, intraperitoneal pre-treatment 

with 1 mg/kg mecamylamine significantly reversed the antinociceptive action of BS (20 mg/kg) in the 

hot-plate (p<0.001) and tail-flick (p<0.001) tests in comparison with the BS alone. 

 

 

Figure 4. Effects of mecamylamine (i.p.-1mg/kg) on the antinociception of beta-sitosterol (BS) (i.p.-

20mg/kg) in the hot-plate (hind paw withdrawal, licking or jumping) and tail-flick assays. Statistically 

significant difference; ***p<0.001 vs. control; ###p<0.001 vs. beta-sitosterol alone. Data are shown as 

mean±S.E.M. MPE: Maximal possible antinociceptive effect.  



Şakul and Okur  J. Fac. Pharm. Ankara, 45(2): 238-252, 2021 

 

244 

The effect of ketanserin treatment on tail-flick and hot-plate tests was intended to be clarified 

via the single administration of ketanserin (1 mg/kg); nonetheless, the administration did not cause any 

significant difference in antinociceptive response (Figure 5). The results indicate that ketanserin also did 

not reverse the antinociceptive effect observed for BS in a significant way. 

 

 

Figure 5. Effects of ketanserin (i.p.-1mg/kg) on the antinociception of beta-sitosterol (BS) (i.p.-

20mg/kg) in the hot-plate (hind paw withdrawal, licking or jumping) and tail-flick assays. Statistically 

significant difference; ***p<0.001 vs. control. Data are shown as mean±S.E.M. MPE: Maximal possible 

antinociceptive effect.  

 

 

Figure 6. Effects of ondansetron (i.p.-5mg/kg) on the antinociception of beta-sitosterol (BS) (i.p.-

20mg/kg) in the hot-plate (hind paw withdrawal, licking or jumping) and tail-flick assays. Statistically 

significant difference; ***p<0.001 vs. control. Data are shown as mean±S.E.M. MPE: Maximal possible 

antinociceptive effect. 
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As depicted in Figure 6, the administration of intraperitoneal injection of 5 mg/kg ondansetron 

did not modify the antinociceptive activity of BA (20 mg/kg) in the hot-plate and tail-flick assays. 

Moreover, ondansetron pre-treatment did not significantly decrease in latency of the BA-mediated 

analgesic responses according to the hot-plate and tail-flick procedures.  

 

 

Figure 7. Effects of yohimbine (i.p.-1mg/kg) on the antinociception of beta-sitosterol (BS) (i.p.-

20mg/kg) in the hot-plate (hind paw withdrawal, licking or jumping) and tail-flick assays. Statistically 

significant difference; ***p<0.001 vs. control. Data are shown as mean±S.E.M. MPE: Maximal possible 

antinociceptive effect.  

 

 

Figure 8. Effects of naloxone (i.p.-5mg/kg) on the antinociception of beta-sitosterol (BS) (i.p.-20mg/kg) 

in the hot-plate (hind paw withdrawal, licking or jumping) and tail-flick assays. Statistically significant 

difference; ***p<0.001 vs. control; ###p<0.001 vs. beta-sitosterol alone. Data are shown as mean±S.E.M. 

MPE: Maximal possible antinociceptive effect.  
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Figure 7 shows that pre-treatment with only yohimbine (1 mg/kg, i.p.) have not employed any 

antinociceptive effect in both hot-plate and tail-flick tests. Moreover, the pre-treatment with yohimbine 

have not reduced the BS-induced acute thermal antinociceptive effect according to the data obtained by 

the hot-plate or tail-flick tests. 

Figure 8 depicts the involvement of opioid receptors in the antinociceptive effects of BS 

assessed using hot-plate and tail-flick tests, respectively. The treatment of mice with naloxone (5 mg/kg, 

i.p.) have not significantly altered the latency response in the hot-plate and tail-flick assays. On the other 

hand, the pre-treatment with the non-selective opioid antagonist, naloxone, importantly blocked BS-

induced antinociception in the hot-plate (p<0.001) and tail-flick (p<0.001) tests in comparison with BS 

alone. 

Phytosterol phytocompounds such as BS present a similar structure to cholesterol. BS can be 

characterized as one of the common and major phytosterol with numerous biological activities. 

Consequently, BS is a drastic pharmacological agent with protective activities against chronic disorders, 

oxidative stress, and neoplasm [24]. Besides, various scientific data derived from reports report that BS 

present anti-diabetic, anti-inflammatory, chemopreventive and anticancer properties [25]. Nevertheless, 

the investigation on the effect of BS at molecular level remains unclear. The present study demonstrates 

that BS at 20 mg/kg (i.p.) displays anti-nociceptive activity, whereas the obtained data might evidence 

the implicated mechanisms of that activity.  

Herein, the antinociceptive effect of BS was examined via two known methodologies involving 

stimuli. The two methods, hot-plate and tail-flick assays involve the thermal stimuli which stimulate the 

Aδ fibers. Nonetheless, both of tests note different neural pathways.  More specifically, the  tail-flick is 

a spinal reflex [26]. On the other hand, the hot-plate response is under supraspinal control given that the 

hot-plate assay is a specific centrally antinociceptive activity assay [19]. According to Wang et al., the 

hot-plate assay considered to engange in supraspinal sites since only the administration of central 

analgesics enlarge the response time during the experimental [27].  

Dighe et al. previously reported that BS (5, 10 and 20 mg/kg, i.p.) isolated from leaves of Oxalis 

corniculata, displayed promising dose-dependent central-mediated analgesic activity in rodents, 

according to the data obtained by hot plate test and acetic acid-induced writhing test. The data compared 

to active drug, pentazocine [19]. Furthermore, Scapinello et al. demonstrated that various plant extracts 

including BS, stigmasterol, and the isolated components depicted antinociceptive effects in mice, 

according to stimuli responsive tests as formalin, writhing, and hot-plate [28]. Various pharmacological 

approaches have revealed that Cyclooxygenase (COX)-mediated peripheral nociceptive mechanisms 

contribute to pain [29]. Subsequently, data obtained via in vitro COX inhibition assay confirm the in 

vivo system via the acetic acid-mediated peripheral nociceptive pain remedy [30]. A past study revealed 

that BS isolated from Nyctanthes arbortristis leaves can provide protection against peripheral 
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nociceptive pain in a dose dependent manner [31].The data are related with our study, given that as BS 

dose increased, antinociception also determined. Moreover, herein, the determination of the involved 

mechanism to the central antinociception caused by BS, was carried out by using numerous typical 

antagonists of serotonergic, noradrenergic, opioid, and cholinergic receptors. 

It is known that muscarinic and nicotinic acetylcholine receptors mediate the integrative activity 

of acetylcholine in numerous brain functions as ascognition, attention, emotion, and synaptic plasticity. 

Moreover, recent data has recommended that the aforementioned receptors might involve in supraspinal 

pain modulation excepts the known local peripheral and spinal contributions in mediating pain [32]. 

Besides, muscarinic acetylcholine receptors are broadly categorized as pharmacologic targets for pain 

relief while the majority of those focused on central nervous system muscarinic acetylcholine receptors 

[33].  

From the obtained data, cholinergic receptors are being involved in antinociception considering 

that atropine reversed the antinociception of BS. Spinal cord is a major action target for cholinomimetics 

in analgesia. It has been suggested that painful stimuli improve acetylcholine in the spinal cord. 

Therefore, the stimulation of muscarinic receptors in the spinal cord leads to a great discharge of 

inhibitory transmitters associated with reductions in the secretion of excitatory transmitters; this fact 

mediates their antinociception [34]. 

In further, it should be mentioned that the cholinergic system present plethora of therapeutic 

targeted sites against numerous clinically relevant pain states. Guginski et al. proposed that acetylcholine 

mediates its effects through both nicotinic acetylcholine receptors (ligand-gated ion channels) and the 

G protein-coupled muscarinic receptors [35]. It can be evidenced, that the cholinergic system involves 

into the antinociception caused by BS, according to the obtained results after mecamylamine 

administration at a dose similar to that known to prevent antinociception induced by nicotinic receptor 

agonist. Besides, a number of studies reported that α4β2 ligands present antinociceptive effects in 

relevance with their action on spinal and supraspinal pathways. The α4β2 receptors can be ascertained to 

various brain areas, including the nucleusraphe magnus, midbrain periaqueductal gray, and locus 

coeruleus [36].  

In addition, the findings obtained have shown that the effects of the BS tend to include the 

involvement of the opioid system. It is reported that the opioids perform their analgesic activity through 

the spinal (µ2, k1, δ2) receptors and supraspinal (µ1, k3, δ1, σ2) [19]. Naloxone is a specific opioid receptor 

antagonist in the central nervous system, able to restrict the effect of anesthetics, such as morphine [28]. 

Therefore, naloxone was applied in order to examine the opioid effect of BS and effect of naloxone on 

beta-sitosterol on thermic stimulus-induced pain involvement in the mechanism of antinociceptive 

action. BS was applied following naloxone (1 mg/kg, s.c.) administration according to previous report 
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studying the involvement of opioid receptors. It was revealed that  naloxone reversed its antinociceptive 

activity [19].  

The noradrenergic receptor system seems to play a major role in nociception and antinociception 

in various species. The noradrenergic receptor system comprises the endogenous ligand nor-adrenaline 

and its receptors. It is reported that term “noradrenergic” mostly refers to alpha-, while adrenergic refers 

to beta-adrenergic receptors; although, nor-adrenaline can bind to β-adrenergic receptors. This fact is 

related to the lower binding affinity of noradrenaline to beta-adrenergic than alpha-adrenergic receptors 

[37]. According to this assumption, the term noradrenergic receptor system was chosen for this study. 

Noradrenergic receptor system is targeted by α2 adrenergic molecules such as clonidine, 

dexmedetomidine and xylazine which are agonists and antagonists such as yohimbine [38]. 

Consequently, in order to examine the involvement of antagonism in antinociception, a dose of 1 mg/kg 

yohimbine was administered. The chosen dose has not significantly affected the pain-related behavior 

of animals, according to control. When BS administered in 20 mg/kg dose, the application of yohimbine 

did not reverse the antinociceptive effect followed by BS dose.  

Numerous studies have demonstrated that serotonin regulates nociceptive reaction by 5-HT1, 5-

HT2, 5-HT3, and 5-HT7 receptors in the central nervous system [39]. Consequently, serotonin receptors 

might involve to nociceptive response. Moreover, pain perception can be altered via inhibitory 

descending ways from the central nervous system and especially serotonin. The inhibition of pain 

transmission can occur via the activation of descending ways from the raphe nuclei to the dorsal horn 

of spinal cord, mediated via serotonin. In case of  peripheral level, serotonin might involve with pain 

signalization [40]. According to the results of hot-plate and tail-flick tests, ketanserin and ondansetron 

which are the selective antagonists of 5-HT2A/2C and 5-HT3 receptors, have not blocked the reduction in 

nociceptive response induced by BS (20 mg/kg). Subsequently, the serotonergic system has not involved 

in the antinociceptive action of BS.  

From the present study, involving the test of beta-sitosterol as antinociceptive agent according 

to hot-plate and tail-flick tests, it can be concluded that BS present an antinociceptive effect on 

nociception-induced tests. Although, future studies will allow determining the involved mechanisms, a 

contribution of the opioid and cholinergic systems in the antinociceptive action of beta-sitosterol can be 

ascertained. Finally, more studies would be able to exert the favorable role of beta-sitosterol to pain 

control and management. 
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