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Abstract 

Ridge Regression is a very common way of the remedies for dealing with the “multicollinearity problem” in 

multiple regression analysis. Although it can provide much more consistent estimates than the ordinary least 

squares does, there is still a problematic issue in the use of Ridge Regression, which is the choice of biasing 

parameter k. In this study we propose the use of some Artificial Intelligence Algorithms, such as genetic and 

differential evolution, for choosing the optimal k value by not allowing to increase too much the mean absolute 

prediction error while reducing the variation inflation factors and condition number. 

Keywords: Ridge Regression; Genetic Algorithm, Differential Evolution Algorithm, MAPE, Variance İnflation 
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Ridge Regresyonda Yanlılık Parametresi k’nın Belirlenmesinde Genetik ve 

Differansiyel Gelişim Algoritmalarının Performanslarına Dair Bir Karşılaştırması 

 

Özet 

Çoklu regresyonda karşılaşılan “çoklubağlantı” problem için en yaygın olarak önerilen yaklaşım Ridge 

Regresyondur. Ridge regresyon en küçük kareler yönteminden daha tutarlı tahminler sağlamasına rağmen 

yanlılık partametresi k’nın belirlenmesi hala çözülmesi gereken bir meseledir. Bu çalışmada optimal k değerini 

bulmak için Yapay Zeka Tekniklerinden olan Genetik Algoritma ve Diferansiyel Gelişim Algoritması 

‘nın kullanımı önerilmiştir. Bu yaklaşımların uygulanmasında varyans büyütme faktörü ile şartlı sayı gibi 

çoklubağlantı probleminin teşhisinde kulanılan göstergeler küçültülmeye çalışılırken ortalama mutlak yüzdelik 

hatanın çok büyümemesini kontrol altında tutarak algoritmalar geliştirilmiştir. 

Anahtar kelimeler: Ridge Regresyon; Genetik Algoritma, Differansiyal Gelişim Algoritması, Ortalama 

Mutlak Yüzdelik Hata, Varyans Büyütme Faktörü, Şartlı Sayı 

 
 

1. Introduction 

 Multiple Regression analysis is a most powerful statistical tool for evaluating the relationship between the 

dependent variable and the explanatory variables. If it is believed that true relationship between the dependent 

variable and the independent variables is linear then the model 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + ⋯ + 𝛽𝑝𝑋𝑝𝑖 + 𝜀𝑖 

, which is called a multiple regression model, can be used. This model makes some assumptions on the random 

error term. These assumptions are that errors have zero mean, 𝐸(𝜀𝑖) = 0, and constant variance 𝑉𝑎𝑟(𝜀𝑖) = 𝜎2, 

and are mutually uncorrelated 𝐶𝑜𝑣(𝜀𝑖 , 𝜀𝑗) = 0 for 𝑖 ≠ 𝑗.  One another important assumption of the multiple 

regression model is that there are no any severe or exact linear independencies among the explanatory variables. 

When you study the real life problems with too many explanatory variables, the linear dependencies among the 

independent variables can be inevitable. In that case ridge regression can provide biased but much more 

consistent estimates. This technique is firstly introduced by Hoerl and Kennard (1970 a,b). They provided to 

decrease the variances of the parameters estimates by adding a positive small number to the diagonal element of 

the design matrix. Since then many researchers worked on it. As mentioning very briefly these are Hoerl A.E., 

Kennard R.W., Baldwin K.F. (1975), Hoerl A.E., Kennard R.W. (1976), Vinod H.D. (1976), Gibbons D.G. 

(1981). There are some other papers which contributes on the choice of k value. For example; Mardikyan S., 

Çetin E. (2008), Praga-Alejo  et al (2008), Ahn, J.J, et al (2012), Khalaf G. And Shukur G.(2005), Kibria B.M.G. 

(2003), Muniz G. Et all (2012). Uslu V. R et al (2014).  

2. Multicollinearity 

Multicollinearity is one of the serious problems in multiple regression analysis and   depicts a condition in 

which two or more explanatory variables in the multiple regression model are highly linearly related with one 

another.  Since the case happens, the struggling with this problem is very important. In multiple regression 

analysis the multicollinearity problem is defined as follows; 

Let 𝑋1, 𝑋2, … , 𝑋𝑝  be explanatory variables and 𝑎1, 𝑎2, … , 𝑎𝑝 scalars which at least one of 𝑎𝑗 is not zero. If the 

relationship  

𝑎1𝑋1 + 𝑎2𝑋2 + ⋯ + 𝑎𝑝𝑋𝑝 ≅ 0 

 exits, where ≅ denotes approximate equality, then the situation is referred as the multicollinearity problem. 

Multicollinearity implies that 𝑋′𝑋 is near singular and at least one eigenvalue is very close to zero. In this case 

𝑋′𝑋  can be invertible then the parameter estimates can be found but their standard errors are very large than it 

should be. High variances of the regression coefficients may drastically reduce the precision of estimates. As a 
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result of this some variables may be excluded from the model because they are not significant in the sample even 

though they are important in the population. Therefore, the detecting of this problem is very important. 

There are some diagnostics to detect it: These are; 

a. Variance Inflation Factors (𝑽𝑰𝑭𝒋): This measure calculated for each explanatory variables is actually the 

corresponding diagonal element of the inverse of the correlation matrix (𝑿′𝑿) of explanatory variables.  

 𝑉𝐼𝐹𝑗 = 1 (1 − 𝑅𝑗
2)⁄  

where 𝑅𝑗
2 is the determination coefficient of the jth explanatory variable regressing on the remaining variables. 

The general rule of thumb there is a serious multicollinearity problem on the data set if one or some VIF values 

are greater than 10. (Wooldridge, J. M, 2000) 

 

b. The eigenvalues of the correlation matrix(𝑿′𝑿) : Let  𝜆1, 𝜆2, … … , 𝜆𝑝 be the eigenvalues of the correlation 

matrix. If there is one or more severe collinearity between the columns of matrix X, this causes some of the 

eigenvalues to be very close zero. In a very ideal case, which is the orthogonality between columns of X, the 

sum of invers of eigenvalues is equal to the number of the explanatory variables  

         ∑
1

𝜆𝑖

𝑝
𝑖=1 = 𝑝 

   As the sum is going apart from p then the severity of multicollinearity is increasing (Belsley, Kuh and Welsch, 

1980). 

c. Condition Number: It is defined as the ratio of the maximum eigenvalue to the minimum eigenvalue. If it lies 

between 30 and 100 it signs a moderate multicollinearity and is greater than 100 the data has a severe 

multicollinearity problem  

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑁𝑢𝑚𝑏𝑒𝑟(𝐶𝑁) =
λ𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

< 30 

d. where λ𝑚𝑎𝑥  and 𝜆𝑚𝑖𝑛  is the maximum and minimum eigenvalues of the correlation matrix, respectively (Belsley 

et al, 1980). 

 

 

3. Ridge Regression 

The multiple regression model is given by 

                        𝒀 = 𝑿𝜷 + 𝜺                                                                                                                              (1) 

In presence of multicollinearity there are several remedies that we can apply, for avoiding from its undesirable 

effects on the estimates. Ridge regression is one of the remedies mostly employed. It was firstly proposed by 

Hoerl and Kennard (1970 a, b). In this method the estimates of the regression coefficients are obtained with a 

little bias guaranteed a smaller variance by adding a very small positive number in the diagonal elements of  𝑿′𝑿. 

While the least squares estimators of regression coefficients are                

                                                         �̂� = (𝑿′𝑿)−𝟏𝑿′𝒀                                                                                                (2) 

the ridge estimators are introduced as 

                                                        �̂�𝑹 = (𝑿′𝑿 + 𝑘𝑰)𝑿′𝒀                                                                                        (3) 

where 𝒌 is a very small constant determined by the researcher. Here (𝑿′𝑿) is in the correlation form. Gauss 

Markov Theorem states that under the standard assumptions about errors; such as errors have expectation zero, 

are uncorrelated and have the equal variances; the least squares estimators of the parameters of the model in (1) 

are linear, unbiased and have the minimum variances. But there is no guarantee that the variance of �̂� will be 

small. For this purpose the ridge estimator estimates 𝜷 with a bias but a smaller variance than the least squares 

estimators’ one.  The mean squared error of �̂�𝑹  we can easily see that  

                                  𝑀𝑆𝐸(�̂�𝑹) = 𝐸(�̂�𝑹 − 𝜷)
2

= 𝑉𝑎𝑟(�̂�𝑹) + [𝐸(�̂�𝑹) − 𝜷]
2
                (4) 
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can be made small than the mean squared error of  �̂� which is equal to variance of �̂� since there is no bias in it.     

The ridge estimator is actually the linear transformation of the least squares estimator. 

�̂�𝑹 = (𝑿′𝑿 + 𝑘𝑰)−𝟏𝑿′𝒀 

                                                                              = (𝑿′𝑿 + 𝑘𝑰)−𝟏(𝑿′𝑿)�̂� = 𝒁�̂�                                                         (5) 

The expected value of ridge estimator tells us that it is also an biased estimator of 𝜷. 

                                                                   𝐸(�̂�𝑹) = 𝐸(𝒁�̂�) = 𝒁 𝜷                                                                           (6) 

The variance-covariance matrix of �̂�𝑹 is 

𝑉𝑎𝑟(�̂�𝑹) = 𝑉𝑎𝑟(𝒁�̂�) = 𝒁𝑉𝑎𝑟(�̂�)𝒁′ 

   = 𝒁(𝜎2(𝑿′𝑿)−𝟏)𝒁′ 

                                                                            = 𝜎2(𝑿′𝑿 + 𝒌𝑰)−𝟏(𝑿′𝑿)(𝑿′𝑿 + 𝑘𝑰)−𝟏                                          (7) 

Furthermore, VIF values based on the ridge estimators are defined as the diagonal elements of the matrix 

(𝑿′𝑿 + 𝒌𝑰)−𝟏(𝑿′𝑿)(𝑿′𝑿 + 𝑘𝑰)−𝟏 

On the other side since the least squares estimator is unbiased, the mean squared error will be the variance of the 

estimator. 

𝑀𝑆𝐸(�̂� ) = 𝐸(�̂� − 𝜷)
′
(�̂� − 𝜷) = 𝑇𝑟 𝑉𝑎𝑟(�̂� ) 

                                                                   = 𝜎2𝑇𝑟(𝑿′𝑿)−1 = 𝜎2 ∑
1

𝜆𝑗

𝑝
𝑗=1                                                             (8) 

where 𝜆𝑗  is the jth eigenvalues of 𝑿′𝑿 . Contrarily the mean squared error of ridge estimator       is decomposed 

into two parts as below. 

                   𝑀𝑆𝐸(�̂�𝑹) = 𝑇𝑟 𝑉𝑎𝑟(�̂�𝑹) + 𝐵𝑖𝑎𝑠2 

  = 𝜎2𝑇𝑟[ (𝑿′𝑿 + 𝑘𝑰)−𝟏(𝑿′𝑿)(𝑿′𝑿 + 𝑘𝑰)−𝟏] + 𝑘2 𝜷(𝑿′𝑿 + 𝑘𝑰)−𝟐𝜷 

                                     = 𝜎2 ∑
𝜆𝑗

(𝜆𝑗+𝑘)
2

𝑝
𝑗=1 + 𝑘2𝜷′(𝑿′𝑿 + 𝑘𝑰)−𝟐𝜷                                                                      (9)                 

                                      = 𝛾1(𝑘) + 𝛾2(𝑘)                                                                           

First part is the sum of variances of all the �̂�𝑹. The second part is considered the square of a bias. It is obvious 

that the total variance decreases as k increases, while the squared bias increases.  Therefore the possibility exists 

that there are admissible nonzero values of k for which 

𝑀𝑆𝐸(�̂�𝑹) <  𝑀𝑆𝐸(�̂� ) 

 If it can be done 𝑉𝑎𝑟(�̂� ) > 𝑉𝑎𝑟(�̂�𝑹) can be satisfied. In order to understand the relationship among the 

variance, bias and k, there will be more informative to have a look at the graph, which is well known by the 

researchers dealing with ridge regression, presented in Figure 1. All of the related proofs can be accessed from 

the paper by Hoerl and Kennard (1970a).  

The residual sum of squares for the ridge estimator is 

                                   𝑆𝑆𝐸(�̂�𝑹) = (𝒀 − 𝑿�̂�𝑹)′(𝒀 − 𝑿�̂�𝑹) 

= (𝒀 − 𝑿�̂�)
′
(𝒀 − 𝑿�̂�) + (�̂�𝑹 −  �̂�)′𝑿′𝑿(�̂�𝑹 −  �̂�)       (10) 

First term in the right side of the equation (10) is the residual sum of squares for the least square estimator and 

the second term is actually the quadratic form of (�̂�𝑹 −  �̂�).This implies that as k increases the residual sum of 

squares of ridge estimator increases and consequently the determination coefficient 𝑹𝟐 based on Ridge decreases. 

Therefore, the ridge estimate will not necessarily give the best fit to the data when we are more interested in 

obtaining a stable set of parameter estimates. 
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                               Figure 1: The relationships among variance,bias and k 

 

 

As we can easily see that the choosing a value of k is a crucial issue in ridge regression.  Ridge trace is one of 

the methods that we can apply. It is a plot of the elements of the ridge estimator versus k usually in the interval 

(0, 1). From the ridge trace the researchers can see that at a reasonable k value the estimates become stable (Hoerl 

and Kennard, 1970b). Marquardt and Snee (1975) suggest using only 25 values of k, spaced approximately 

logarithmically over that interval.  

The optimal k value can be found by examining the orthogonal form of the regression model. It is  

𝒀 = 𝑿∗𝜶 + 𝜺                                                                (11) 

where 𝑿∗ = 𝑿𝑫 and 𝜶 = 𝑫′𝜷. The Generalized Ridge Estimators of 𝜶 is  

                        𝜶�̂� = (𝑿∗′𝑿∗ + 𝑘𝑰)−1𝑿∗′𝒀                                              (12) 

The value of 𝑘𝑖 which minimizes the MSE (𝜶�̂�) is  

𝑘𝑖𝐺𝑅
=

𝜎2

𝛼𝑖
2                                                                          (13) 

where 𝜎2 is the error variance and 𝛼𝑖 is the ith element of 𝜶 (Hoerl and Kennard, 1970a,b). When the actual 

values are not known the formula will be  

𝑘𝑖𝐺𝑅
=

𝜎2̂

�̂�𝑖
2                                                                          (14) 

where the estimates are obtained from the least squares. Alternative forms of the formula based on �̂� for k can 

be respectively given as follows; 

1. The harmonic mean of  𝑘𝑖𝐺𝑅
; 𝑘𝐻𝑅 =

𝑝�̂�2

∑ �̂�𝑖
2(Hoerl et al., 1975)                                                                            (15) 

2. The geometric mean of 𝑘𝑖𝐺𝑅
; 𝑘𝐺𝑀 =

�̂�2

∏(�̂�𝑖
2)

1/𝑝 (Kibria, 2003)                                                                             (16) 

3. The median of 𝑘𝑖𝐺𝑅
;𝑘𝑀𝐸𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑘𝑖𝐺𝑅

) = 𝑀𝑒𝑑𝑖𝑎𝑛 (
𝜎2̂

�̂�𝑖
2)(Kibria,2003)                                                      (17) 

Hoerl, Kennard and Baldwin (1975) suggested another method for finding k value which is given as 

𝑘 =
𝑝�̂�2

�̂�′�̂�
                                                                         (18) 

where �̂�2 and �̂� are the least squares estimates and this approach is called “ordinary ridge regression” (ORR).    

Hoerl and Kennard (1976) introduced an iterative method for finding optimal k value, which is called “iterative 

ridge regression” (IRG). In this method k is calculated as in below; 
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𝑘𝐼𝑅𝐺(𝑡) =
𝑝�̂�2(𝑡−1)

�̂�(𝑡−1)′�̂�(𝑡−1)
                                                             (19) 

where �̂�2(𝑡 − 1)  and  �̂�(𝑡−1) are the corresponding residual mean square and the estimate vector of regression 

coefficients at (t-1)th iteration, respectively. Generally, the initials are chosen the results from the least squares 

method.  

Uslu (2014) proposes to find k value using the particle swarm optimization technique, regarding to the objective 

function defined as min{𝑀𝐴𝑃𝐸(𝑘) + ∅(𝑘)}. In this objective function ∅(𝑘) is defined by the sum of VIF values 

providing that VIF’s are limited to be less than 10. Praga Alejo et al. (2008) propose to find k by using the genetic 

algorithm with a problematic objective function and there is no limitation for VIF values. Therefore, the standard 

errors of the regression coefficients will be able to shrink too much and the bias will increase too much as well, 

which is the case we don’t want. 

4. The Proposed Approach for finding k 

In this paper we redefine the objective function as in Equation (20) below and propose two approaches based on 

the genetic algorithm and differential evolution algorithm for finding the best value for k.  The objective function 

is defined as 

min{𝑀𝐴𝑃𝐸(𝑘) + ∅(𝑘) + 𝜃(𝑘)}                                        (20) 

with subject to 0 < 𝑘 < 1 ; where    𝑀𝐴𝑃𝐸(𝑘) =
1

𝑛
∑ |

𝑦𝑖−�̂�𝑖

𝑦𝑖
|         𝑖 = 1,2, … . . 𝑛𝑛

𝑖=1  

∅(𝑘) = {
0,        ∀𝑉𝐼𝐹𝑗 < 10,                   𝑗 = 1,2, … , 𝑝

∑ 𝑉𝐼𝐹𝑗 ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑝
𝑗=1 ,       𝑗 = 1,2, … 𝑝

  

𝜃(𝑘) = {
0,        ∀𝐶𝑁𝑗 < 30,        𝑗 = 1,2, … , 𝑝

𝐶𝑁𝑗,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,       𝑗 = 1,2, … , 𝑝
 

By defining this objective function in that way, we are trying to find k value which minimizes the mean absolute 

prediction error with subject to both VIF values and the condition number in order to be sure that there will be 

no more multicollinearity problem in the data set used.  

In ridge regression as k increases the ill conditioning of 𝑿′𝑿 is getting well. Therefore, the detectors of 

multicollinearity such as the condition number and VIF values are getting smaller but the residuals sum of 

squares increases.  

Before we introduce both of the proposed algorithms, it would be good to remind how we generate genes and 

chromosomes. We have decided the number of genes as 4 because we know that k must be a very small positive 

number (Hoerl, 1962). Each gene is a number randomly generated from the interval (0, 9) because we want that 

each chromosome will be corresponded to a 4-digit number.  Then this number is converted to the value between 

(0, 1) for k by using formula given in Equation 22.  

Here are the steps of both proposed methods respectively. 

 

The steps of the proposed method based on the differential evolution algorithm.  

Step 1: Generate the initial population. 

After NP (the size of the population or the # of chromosomes); D (the # of the genes in each chromosomes) are 

defined the initial population are generated by the equation (21).  

𝑥𝑗𝑖 = 𝑥𝑗
𝑙 + 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑𝑗[0 1] ∗ (𝑥𝑢 − 𝑥𝑙) )    𝑖 = 1,2, … , 𝑁𝑃,   𝑗 = 1,2, … . , 𝐷              (21) 

where 

𝑥𝑗𝑖 : jth gene of ith chromosome, 

𝑥𝑙 , 𝑥𝑢:  the lower and upper limits for a gen. 
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The number of genes 𝐷, the lower limit  𝑥𝑙  and the upper limit 𝑥𝑢 are to be chosen 4, 0 and 9, respectively. The 

aim of choosing D=4 is to determine the precision of the decimal part.  

NP has to be at least 4 for the operators of the differential evolution algorithm to be implemented.    

Step 2: Evaluate the values for k from the genes. 

Each k value corresponding to the chromosomes are obtained from the following equation.  

𝑘𝑖 =
1

10𝐷
∑ 𝑥𝑗𝑖10𝐷−𝑗               𝑖 = 1,2, … , 𝑁𝑃,   𝑗 = 1,2, … . , 𝐷𝐷

𝑗=1                                         (22) 

Step 3: Apply the mutation operation. 

3 chromosomes are randomly selected apart from the chromosome, which is called the current chromosome, 

symbolized by 𝑥, and is actually to be subjected to mutation operation.   It is taken the difference between the 

first two of the 3 randomly selected chromosomes, and then it is multiplied by the scaling factor (F). And finally, 

it is added to the third chromosome and the final chromosome, which is called the total chromosome, is being 

generated.  

With 𝑥𝑟1,𝑥𝑟2, 𝑥𝑟3 randomly chosen chromosomes, and 𝐹 from the interval (0, 2), 

𝑛𝑗𝑖 = 𝑥𝑗,𝑟3 + 𝑟𝑜𝑢𝑛𝑑 (𝑎𝑏𝑠 (𝐹 ∗ (𝑥𝑗,𝑟1 − 𝑥𝑗,𝑟2)))                                                (23) 

the total chromosome 𝑛  is obtained. F is a real and constant factor ∈ [0, 2] which controls the amplification of 

the differential variation (𝑥𝑗,𝑟1 − 𝑥𝑗,𝑟2) (Storn and Price, 1997). To be able to get the appropriate values for the 

genes we apply the following adjustment. Then the final total chromosome 𝑛𝑗𝑖
∗  is replaced to the total 

chromosome as follows.    

𝑛𝑗𝑖
∗ = {

𝑛𝑗𝑖             𝑥𝑙 ≤ 𝑛𝑗𝑖 ≤ 𝑥𝑢

𝑛𝑗𝑖 = 9,              𝑛𝑗𝑖 >  𝑥𝑢                                           (24) 

𝑛𝑗𝑖 = 𝑛𝑗𝑖
∗ 

Step 4: Apply the crossover operation 

The nominee chromosome for the new population is generated by using the current chromosome and the total 

chromosome(𝑛). To do that, first of all random numbers are generated from the interval (0,1)  for each genes. 

Then each random number are compared with the crossover ratio, which should be determined in the first step. 

With the following rule 

𝑢𝑗𝑖 = {
𝑛𝑗𝑖 ,    𝑟𝑎𝑛𝑑(0,1) ≤ 𝑐𝑜 ∨   𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑗𝑖,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               
                              (25) 

The nominee chromosome (𝑢) has been generated. With 𝑗 = 𝑗𝑟𝑎𝑛𝑑  at least one gene from the total chromosome 

has been transferred to the nominee chromosome.   

Step 5: Calculate the fitness value and the selection 

Fitness value is the value of 𝑀𝐴𝑃𝐸(𝑘) + ∅(𝑘) + 𝜃(𝑘)  . After the mutation and cross over operation the fitness 

value of the nominee chromosome is calculated. If it is less than the one of the current chromosome the nominee 

chromosome, instead of the current chromosome, is replaced into the new population, otherwise the current 

chromosome remains in the next generation.     

If we symbolize 𝑥𝐺+1, as the chromosome to be involved in the new population, the rule will be the as follows. 

𝑥𝑖,𝐺+1 = {
𝑢𝑖,      𝑓(𝑢𝑖)≥𝑓(𝑥𝑖)

𝑥𝑖 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                         (26) 

Step 6: The steps from 3 to 5 is repeated for all chromosome in the population, successively. The new generation 

has been constructed.  

Step 7: The algorithm from Step 2 with the new generation constructed at Step 6 is repeated up to the iteration 

number (its).  The best population will be reached at the end of the iteration. The chromosome with the best 

fitness value in this population will be the best solution of the problem.   
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The steps of the proposed method based on the genetic algorithm  

Step1: Define the parameters of the genetic algorithm. 

Let be ‘NP’ the number of chromosomes which means the size of population, ‘D’ the number of the gens in the 

chromosome, ‘co’ the ratio of crossover, ‘mr’ the ratio of mutation, ‘es’ the number of the chromosomes to be 

eliminated from the population and ‘itrs’ the number iteration. 

Step2: Generate the initial population 

𝑥𝑗𝑖 = 𝑥𝑗
𝑙 + 𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝑟𝑎𝑛𝑑𝑗[0 1] ∗ (𝑥𝑢 − 𝑥𝑙) )    𝑖 = 1,2, … , 𝑁𝑃,   𝑗 = 1,2, … . , 𝐷     (27)                 

where the parameters are defined as in the step 1 of the previous algorithm.  

Step 3: Evaluate the values for k from the genes  

This step is the same as the step 2 of the previous algorithm. The fitness value based on the objective function is 

calculated by k values obtained from each chromosome of the initial population. 

Step 4: Apply the Natural Selection.  

Due to the principle of “the more strong the most possible to survive”, the ‘es’ chromosomes with the worst 

fitness value, are removed from the population. Then the ‘es’ chromosomes are regenerated as in the step 2.  

Step 5: Apply the crossover operation.  

In this step, the chromosomes are randomly paired with each other. The crossover ratio is compared with the 

randomly generated number from the interval (0, 1) for each pair. The crossover operation is applied to the pair 

with the random number, which is less than the ‘cr’.  Then another random number from the integer interval (1, 

L-1) is also generated to decide which crossover point will be.    

Step 6: Apply the mutation operation. 

First of all, random numbers are generated from the interval (0, 1) for each chromosome to decide whether the 

mutation operation is applied, or not. These random numbers are compared to the mutation ratio. When the 

random number is less than the crossover ratio the crossover operation is applied to the corresponding 

chromosome. And again, another random number from the integer interval (1, L) is generated to decide which 

gene is regenerated in that chromosome.   

Step 7: The Choice of k. 

From Step 4 to Step 6 a new generation has been constructed. In order to reach optimal solution for k, these steps 

are repeated up to the iteration number. At the end of the iterations the final population has been constructed. 

The chromosome with the best fitness value will be the optimal solution.   

 

5. Application 

Our proposal approaches have been applied to the real data sets which are known as “Import Data” and “Longley 

Data”. We have chosen these data sets since we want to compare the results from our proposed methods with the 

results from the approaches in literature. The variables are imports (IMPORT-Y), domestic production 

(DOPROD-X1), stock formation (STOCK-X2) and domestic consumption (CONSUM-X3), all measured in 

billions of French francs for the years 1949 through 1959 (Chatterjee and Hadi, 2006). Longley’s data set is a 

classic example of the data with the problem multicollinearity (Longley, J.W., 1967). 

Our proposal approaches were coded in MATLAB-2015. The programs based on DEA and GA are executed for 

the parameters as given below for both data sets. 

The parameters for DEA; 

 The number of iterations (its) as 50, 100, 150, 200. 

 The number of chromosomes (NP) as 30, 40, 50, 60. 
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 The scaling factor (F) as 0.5, 0.8, 1.2. 

 The crossover ration (cr) as 0.4, 0.5, 0.6, 0.7. 

The parameters for GA; 

 The number of iterations (its) as 50, 100, 150, 200. 

 The number of chromosomes (NP) as 30, 40, 50, 60. 

 The number of chromosomes to be eliminated (es) as 5, 8, 13, 17. 

 The crossover ration (cr) as 0.65, 0.75, 0.80, 0.85, 0,95. 

 The mutation ration (mr) as 0.005, 0.01, 0.05, 0.01. 

 

For Longley Data the best result of MAPE was found as 0.210446 at  k = 0.1584 from both DEA and GA. This 

result from DEA is obtained at 𝐹 = 0.5 ,   𝑐𝑟 = 0.6 , 𝑁𝑃 = 30 𝑎𝑛𝑑 𝑖𝑡𝑠 = 50 and from GA at 𝑐𝑟 = 0.95 , 𝑚𝑟 =
0.05 , 𝑁𝑃 = 40 , 𝑒𝑠 = 8  𝑎𝑛𝑑 𝑖𝑡𝑠 = 50. For Import Data the best result of MAPE is found as 0.126696 at k =
0.0662 from both DEA and GA. This result is obtained from DEA at 𝐹 = 0.5 ,   𝑐𝑟 = 0.6 , 𝑁𝑃 = 30 𝑎𝑛𝑑 𝑖𝑡𝑠 = 50 

and from GA at 𝑐𝑟 = 0.95 , 𝑚𝑟 = 0.01 , 𝑁𝑃 = 40 , 𝑒𝑠 = 8  𝑎𝑛𝑑 𝑖𝑡𝑠 = 100. Table 1 and 2 provides the 

comparative results with the other techniques in the literature. Although the other techniques can provide the smaller 

k value but some VIF values and condition number seem still problematic.  In our application k has been found as 

0.1584 for Longley Data and as 0.0662 for Import Data from both DEA and GA. It has been observed that at these 

values of k obtained for both data sets all of VIF’s are less than 10 and condition numbers are less than 30.  

For the purpose of comparison of two proposed approaches we summarized the results obtained at different 

combinations of NP and its by fixing the other parameters such as F, cr, mr and es. Table 3 and 4 is represented to 

show these comparisons at 𝐹 = 0.5 ,   𝑐𝑟 = 0.6  for DEA and at 𝑐𝑟 = 0.85 , 𝑚𝑟 = 0.05 𝑎𝑛𝑑 𝑒𝑠 = 8 for GA for 

Longley Data. Table 5 and 6 is constructed to show the comparisons between DEA and GA for Import data at the 

same parameter’s values. We have picked these parameters values among many trials that give the minimum MAPE, 

just as an example. From these tables we can conclude that DEA can reach the optimal value more often than GA. We 

should point out that at the different values for the parameters, which we have fixed at Table 3 and 4, we have reached 

the same conclusion. We can conclude that DEA has found the minimum MAPE value more often than GA. 

 

Table 1: Longley Data. COEF: Coefficients, SE: Standard Errors of the coefficients. 

 k COEF SE VIF 

 
CN SSE MAPE 

Ordinary 

Least Squares 

0 0.046 0.261 135.53 12220 0.00452 0.0887 
-1.014 0.948 1788.51 

-0.538 0.130 33.62 

-0.2047 0.0425 3.59 

-0.101 0.448 399.15 

2.48 0.617 758.98 

Harmonic 

Mean 

0.0004 -0.0134 0.2202 87.3167 6242.9 0.0050 0.0753 
-0.2524 0.5122 472.1528 

-0.4306 0.0780 10.9497 

-0.1814 0.0400 2.8773 

-0.2828 0.3164 180.2142 

1.8797 0.4149 309.8213 

Geometric 

Mean 

0.0021 0.0784 0.1931 46.6209 1824.7 0.0072 0.0938 
0.2467 0.1863 43.3779 

-0.3449 0.0535 3.5720 

-0.1511 0.0444 2.4598 

-0.1801 0.2164 58.5586 

1.1181 0.2485 77.1886 

Median From 

Kibria 2003 

0.0019 0.0683 0.1949 48.8217 1984.7 0.0070 0.0915 
0.2320 0.1989 50.8888 

-0.3485 0.0537 3.7031 

-0.1526 0.0439 2.4802 
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-0.1962 0.2218 63.2613 

1.1622 0.2577 85.3985 

Ordinary 

Ridge 

0.00036 -0.0134 0.2203 87.3630 6249.9 0.0050 0.0753 
-0.2532 0.5127 473.0805 

-0.4308 0.0781 10.9656 

-0.1814 0.0400 2.8779 

-0.2827 0.3166 180.3958 

1.8805 0.4151 310.1863 

Iterative 

Ridge 

0.0014 0.0379 0.1999 56.1977 2591.7 0.0064 0.0845 
0.1719 0.2456 84.8510 

-0.3613 0.0552 4.2905 

-0.1590 0.0426 2.5478 

-0.2422 0.2392 80.4556 

1.3094 0.2876 116.2878 

Eren 2014 0.0172 0.02 0.1168 9.99 262.88 0.0123 0.1378 
0.10 0.0459 1.54 

-0.37 0.0590 2.55 

-0.16 0.0516 1.95 

-0.27 0.1000 7.32 

1.44 0.0746 4.07 

Proposed 

Method with 

GA 

0.1584 0.2472 0.0341 0.4040 29.9904 0.0259 0.2104 
0.2860 0.0230 0.1845 

-0.1377 0.0557 1.0797 

-0.0034 0.0515 0.9223 

0.2341 0.0298 0.3084 

0.2611 0.0193 0.1291 

Proposed 

Method with 

DEA 

0.1584 0.2472 0.0341 0.4040 29.9904 0.0259 0.2104 
0.2860 0.0230 0.1845 

-0.1377 0.0557 1.0797 

-0.0034 0.0515 0.9223 

0.2341 0.0298 0.3084 

0.2611 0.0193 0.1291 
 

Table 2. Import Data. COEF: Coefficients, SE: Standard Errors of the coefficients. 

 k  COEF SE VIF 

 

CN SSE MAPE 

Ordinary 

Least 

Squares 

0  -0.3393 0.464 185.9975 742.9346 0.0081 0,1052 

 0.2130 0.0343 1.0189 

 1.3027 0.464 186.1100 

Harmonic 

Mean 

0.0016  -0.0297  0.2976 72.0916 462.4151 0.0086 0.1097 

 0.2158 0.0351 1.0046 

 0.9922 0.2977 72.1348 

Geometric 

Mean 

0.0035  0.1256 0.2153 34.8947 321.4231 0.0093 0.1235 

 0.2169 0.0364 0.9972 

 0.8359 0.2154 34.9153 

Median 

From 

Kibria 2003 

0.0021  0.0222 0.2704 58.1769 415.3280 0.0088 0.1206 

 0.2162 0.0355 1.0022 

 0.9400 0.2705 58.2117 

Ordinary 

Ridge 

0.0016  -0.0340 0.3001 73.3001 466.2798 0.0086 0.1097 

 0.2157 0.0351 1.0048 

 0.9965 0.3002 73.3440 

Iterative 

Ridge 

0.0042  0.1594 0,1969 28.5743 290.7252 0.0095 0.1137 

 0.2171 0.0368 0.9952 

 0.8018 0.1970 28.5910 

Eren 2014 0.0090  0.2897 0.1212 9.99 171.7709 0.0103 0.1185 

 0.2174 0.0380 0.98 

 0.6692 0.1213 10.0 
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Proposed 

Method 

with GA 

0.0662  0.4333 
0.0305 

0.5183 29.9801 0.0126 0.1267 

 0.2080 
0.0398 

0.8803 

 0.4993 0.0305 0.5181 

Proposed 

Method 

with DEA 

0.0662  0.4333 0.0305 0.5183 29.9801 0.0126 0.1267 

 0.2080 0.0398 0.8803 

 0.4993 0.0305 0.5181 
 
 

 

 

 

Table 3: For DEA, MAPE/the iteration at which the optimal solution has been achieved  

for Longley Data. 

 

 

 

 

30 

 

40 

 

50 

 

60 

50 0,210446/21 0,210784/29 0,210446/34 0,210446/38 

100 0,210446/14 0,210446/44 0,210446/51 0,210446/32 

150 0,210446/29 0,210446/14 0,210446/14 0,210446/34 

200 0,210446/25 0,210446/38 0,210446/62 0,210446/35 

                 The optimal MAPE is obtained at F=0.5 and cr=0.6. 

 

Table 4: For GA, MAPE/the iteration at which the optimal solution has been achieved  

for Longley Data. 

 

 

 

 

30 

 

40 

 

50 

 

60 

    50 0,211497/16 0,211288/6 0,210657/3 0,210615/19 

100 0,212245/3 0,210489/11 0,210784/27 0,210446/2 

150 0,210489/18 0,210531/43 0,210446/44 0,210446/46 

200 0,210657/153 0,210700/154 0,210489/79 0,210446/111 

         The optimal MAPE is obtained at cr=0.85, mr=0.05.  

 

Table 5: For DEA, MAPE/the iteration at which the optimal solution has been achieved  

for IMPORT Data. 

 

 

 

 

30 

 

40 

 

50 

 

60 

50 0,126696/19 0,126715/42 0,126696/41 0,126696/28 

100 0,126734/6 0,126696/32 0,126696/36 0,126696/46 

150 0,126696/20 0,126696/21 0,126715/21 0,126696/31 

200 0,126696/23 0,126715/16 0,126734/31 0,126696/31 

              The optimal MAPE is obtained at F=0.5 and cr=0.6. 

 

 

 

Iteration 
NP 

Iteration 
NP 

Iteration 
NP 
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Table 6: For GA, MAPE/the iteration at which the optimal solution has been achieved  

for IMPORT Data. 

 

 

 

 

30 

 

40 

 

50 

 

60 

50 0,126940/15 0,127089/20 0,126884/13 0,126977/11 

100 0,126696/99 0,126734/80 0,126753/12 0,126828/4 

150 0,126772/22 0,126696/62 0,126696/94 0,126734/133 

200 0,126696/82 0,126696/85 0,126696/42 0,126696/47 

            The optimal MAPE is obtained at cr=0.85, mr=0.05. 

 

6. Conclusion  

As you can see from Table 1 and 2, at k found from both approaches, the standard errors of the regression 

coefficients have been decreased and MAPE, and consequently SSE, has not been allowed to increase too much. 

Also, we can say that the condition number as well as VIF values have been shrank to the desired level.  

Consequently, this result means that there is no more multicollinearity problem in the data sets.  

Since we have taken into account condition number as well as VIF when MAPE was doing minimized, the 

proposed methods based on GA and DEA could have found the optimal solution for k and consequently 

minimum MAPE. Speaking of the performances of these two approaches we can say that there is not much 

difference between them. Both approaches find the same result, however the approach based on DEA finds this 

result more frequently than GA when we change the values of the parameters of the algorithms such as F, cr, mr 

and es. This result is true for both data sets.  
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