Research Article
BibTex RIS Cite

JİNEKOLOJİK LAPAROSKOPİK OPERASYONLARDA İNTRAABDOMİNAL KARBONDİOKSİT İNSÜFLASYONUNA BAĞLI END-TİDAL KARBONDİOKSİT DEĞİŞİKLİKLERİ SEREBRAL OKSİJENİZASYONU ETKİLİYOR MU?

Year 2021, Volume: 4 Issue: 3, 84 - 93, 09.12.2021
https://doi.org/10.33713/egetbd.930256

Abstract

AMAÇ: Laparoskopik teknikte cerrahi alanda yeterli görüntünün sağlanması ve trokarların yerleştirilmesi için pnömoperitoneum oluşturulması gerekmektedir. Pnömoperitoneum oluşumunda ise distansiyon sıklıkla karbondioksit (CO2) gazı ile sağlanmaktadır. Ancak CO2 peritondan hızla emilerek hiperkarbi ve asidoza neden olmaktadır. Yapılan çalışmalarda; karbondioksit insüflasyonunun hastalarda kardiyovasküler, solunumsal ve asit-baz dengesinde değişikliklere neden olabileceği ve bunların sonucunda serebral perfüzyon ve oksijenizasyon üzerine çeşitli değişiklikler görülebileceği saptanmıştır.
MATERYEL METOD: Jinekolojik laparoskopik operasyon uygulanan 43 hasta çalışmaya dahil edildi. Operasyon süresince end-tidal karbondioksit (EtCO2) değerlerine göre hastalar ılımlı hipokarbik (Grup 1) (n=21 ) ve ılımlı hiperkarbik (Grup 2) (n=22 ) olarak 2 gruba ayrıldı. Hastaların indüksiyon öncesi (T1), indüksiyon sonras ı(T2), insüflasyonda (T3), insüflasyondan 20 dk (T4), 50 dk (T5), 80 dk (T6) sonrası, desüflasyonda (T7), ekstübasyon sonrası (T8) hemodinamik verileri ve Near İnfra Red Spektroskopisi (NIRS) değerleri kaydedildi. Hastalara preoperatif dönemde operasyondan 1 saat önce ve postoperatif dönemde operasyondan saat sonra standardize mini mental test (SMMT) uygulandı.
BULGULAR: Hastaların tamamında operasyon süresi ile birlikte EtCO2, parsiyel karbondioksit basıncı (paCO2 ) ve NIRS değerlerinde artış saptanırken 2 grup arasında anlamlı fark gözlenmedi. Çalışmaya katılan bir hastada ekstübasyon sonrası bronkospazma geliştiği dönemde serebral desatürasyon gözlendi.
SONUÇ: İntraoperatif EtCO2 değerlerinden bağımsız olarak hastalarda; CO2 insüflasyonu sonrası zamanla bağlantılı olarak NIRS değerlerinde artış görüldü. Hastaların postoperatif SMMT puanları preoperatif değerlerine göre yüksek bulundu. Bunun CO2 gazının serebral damarlar üzerine yaptığı vazodilatasyonla ilişkili olduğunu düşünmekteyiz. Ancak bu sonuç klinik olarak önemli bir fark yaratmadı.

References

  • 1. Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg 2007;104(1):51-8.
  • 2. ST Tan. Cerebral Oksimetriy In Cardiac Surgery. Hong Kong Med J 2008;14:220-5.
  • 3. Huettemann E, Terborg C, Sakka SG, Petrat G, Schier F, Reinhart K. Preserved CO(2) reactivity and increase in middle cerebral arterial blood flow velocity during laparoscopic surgery in children. Anesth Analg 2002;94:255-8.
  • 4. Papadimitriou LS, Livanios SH, Moka EG, Demesticha TD, Papadimitriou JD. Cerebral blood flow velocity alterations, under two different carbon dioxide management strategies, during sevoflurane anesthesia in gyne-cological laparoscopic surgery. Neurol Res 2003;25:361-9.
  • 5. Erol S, Günaydın B. Jinekolojik Laparoskopik Cerrahide Serebral Oksimetre Kullanımının Önemi. Gazi Med J 2012;23:126-32.
  • 6. Lee JR, Lee PB, Do SH, Jeon YT, Lee JM, Hwang JY, Han SH. The effect of gynaecological laparoscopic surgery on cerebral oxygenation. J Int Med Res 2006;34:1–6.
  • 7. Acar C. Toktafl C. Laparoskopik cerrahinin temel fizyolojik etkileri. Turk Urol Sem 2010;1:119-125.
  • 8. Abe K, Hashimoto N, Taniguchi A, Yoshiya I. Middle cerebral artery blood flow velocity during laparoscopic surgery in head-down position. Surg Laparosc Endosc 1998;8:1-4.12.
  • 9. Fujii Y, Tanaka H, Tsuruoka S, Toyooka H,Amaha K. Middle cerebral arte-rial blood flow velocity increases during laparoscopic cholecystectomy. Anesth Analg 1994;78:80-3.13. 10. Huettemann E, Terborg C, Sakka SG, Petrat G, Schier F, Reinhart K. Preserved CO(2) reactivity and increase in middle cerebral arterial blood flow velocity during laparoscopic surgery in children. Anesth Analg 2002;94:255-8.
  • 11. Cho H, Nemoto EM, Yonas H, Balzer J, Sclabassi RJ. Cerebral monitoring by means of oximetry and somatosensory evoked potentials during ca-rotid endarterectomy. J Neurosurg 1998;89:533-8.
  • 12. de Waal EC, Vries JW, Kruitwagen CL, Kalkman CJ. The effects of low-pressure carbon dioxide pneumoperitoneum on cerebral oxygenation and cerebral blood volume in children. Anesth Analg. 2002;94:500–5.
  • 13. Asaad OM. Different ventilation techniques and hemodynamic optimization to maintain regional cerebral oxygen saturation (rScO2) during laparoscopic bariatric surgery: a prospective randomized interventional study.J Anesth. 2018;32(3):394-402.
  • 14. Meng L, Mantulin WW, Alexander BS. Head-up tilt and hyperventilation produce similar changes in cerebral oxygenation and blood volume: an observational comparison study using frequency domain near-infrared spectroscopy. Can J Anaesth. 2012;59:357–65.
  • 15. Kitajima T, Shinohara M, Ogata H. Cerebral oxygen metabolism measured by near-infrared laser spectroscopy during laparoscopic cholecystecomy with CO2 insufflation. Surg Lap Endo. 1996;6:210–2.
  • 16. Gipson CL, Johnson GA, Fisher R, et al. Changes in cerebral oximetry during peritoneal insufflation for laparoscopic procedures. J Minim Access Surg. 2006;2:67–72.
  • 17. Casati A, Fanelli G, Pietropaoli P, Proietti R, Tufano R, Montanini S. Monitoring cerebral oxygen saturation in elderly patients undergoing general abdominal surgery: a prospective cohort study. Eur J Anaesthesiol 2007;24:59–65.
  • 18. Hung YC, Huang CJ, Kuok CH, Chien CC, Hsu YWI. The effect of hemodynamic changes induced by prıpofol induction on cerebral oxygenation. J Clin Anesth 2005;17:353-7.
  • 19. Oztan MO, Aydın G, Çakar EB, Sutaş Bozkurt P, Köylüoğlu G. Effects of Carbon Dioxide Insufflation and Trendelenburg Position on Brain Oxygenation During Laparoscopy in Children. Surgia Laparosc Endosc Percutan Tech . 2019;29(2):90-94.
  • 20. Kaminey THE, Elmadhun NY, Kasper EM, Papavassiliou E,Schneider BE. Abdominal insufflation for laparoscopy increases intracranial and intrathoracic pressure in human subjects. Surg Endosc 2016;30:4029-4032.
  • 21. Magnaes B. Body position and cerebrospinal fluid pressure. Part 1: clinical studies on the effect of rapid postural changes. J Neurosurg 1976 44:687-97.
  • 22. Lovell AT, Marshall AC, Elwell CE, Smith M, Goldstone JC. Changes in cerebral blood volume with changes in position in awake and anesthetized subjects. Anesth Analg 2000;90:372-76.
  • 23. Kolb JC, Ainslie PN, Ide K, Poulin MJ. Procotocol to measure acute cerebrovascular and ventilatory responses to isocapnic hypoxia in humans. Respir Physiol Neurobiol 2004;141:191-199.
  • 24. Lovell AT, Owen-Reece H, Elwell CE, Smith M, Goldstone JC. Continuous measurement of cerebral oxygenation by near infrared spectroscopy during induction of anesthesia. Anesth Analg 1999;88:554-8.
  • 25. Picton P, Dering A, Alexander A, Neff M, Miller BS, Shanks A, Housey M, Mashour GA. Influence of Ventilation Strategies and Anesthetic Techniques on Regional Cerebral Oximetry in the Beach Chair Position: A Prospective Interventional Study with a Randomized Comparison of Two Anesthetics. Anesthesiology. 2015;123(4):765-74.
  • 26. Özgün A., Sargın A., Karaman S., Günüşen İ., Alper I., Aşkar F. Z. The relationship between the Trendelenburg position and cerebral hypoxia in patients who have undergone robot-assisted hysterectomy and prostatectomy. Turk J Med Sci 2017;47:1797-1803.
  • 27. O’Malley C, Cunningham AJ. Physiologic changes during laparoscopy. Anesthesiol Clin North Am 2001;1:1–18.
  • 28. Schramm P, Treiber AH, Berres M, Pestel G, Engelhard K, Werner C, Closhen D. Time course of cerebrovascular autoregulation during extreme Trendelenburg position for robotic-assisted prostatic surgery. Anaesthesia 2014;69:58–63.
  • 29. Pelizzo G, Carlini V, Iacob G, et al. Pediatric laparoscopy and adaptive oxygenation and hemodynamic changes. Pediatr Rep. 2017;9:21–25.
  • 30. Wobith M, Acikgöz A, Grosser K, Weimann A. Preoperative cognitive function in very old patients: Influence on the complication rate and length of hospitalization. Chirurg 2019;90:930–935.
  • 31. Colak Z, Borojevic M, Bogovic A, Ivancan V, Biocina B, Kogler VM, Influence of Intraoperative Cerebral Oximetry Monitoring on Neurocognitive Function After Bypass Surgery: a randomized, prospective study. Eur J Cardiothorac Surg 2015;47:447-54.
  • 32. Yao F.S. , Tseng C.C. , Ho C.Y. , Levin S.K, Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth 2004;18(5):552-558.
Year 2021, Volume: 4 Issue: 3, 84 - 93, 09.12.2021
https://doi.org/10.33713/egetbd.930256

Abstract

References

  • 1. Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg 2007;104(1):51-8.
  • 2. ST Tan. Cerebral Oksimetriy In Cardiac Surgery. Hong Kong Med J 2008;14:220-5.
  • 3. Huettemann E, Terborg C, Sakka SG, Petrat G, Schier F, Reinhart K. Preserved CO(2) reactivity and increase in middle cerebral arterial blood flow velocity during laparoscopic surgery in children. Anesth Analg 2002;94:255-8.
  • 4. Papadimitriou LS, Livanios SH, Moka EG, Demesticha TD, Papadimitriou JD. Cerebral blood flow velocity alterations, under two different carbon dioxide management strategies, during sevoflurane anesthesia in gyne-cological laparoscopic surgery. Neurol Res 2003;25:361-9.
  • 5. Erol S, Günaydın B. Jinekolojik Laparoskopik Cerrahide Serebral Oksimetre Kullanımının Önemi. Gazi Med J 2012;23:126-32.
  • 6. Lee JR, Lee PB, Do SH, Jeon YT, Lee JM, Hwang JY, Han SH. The effect of gynaecological laparoscopic surgery on cerebral oxygenation. J Int Med Res 2006;34:1–6.
  • 7. Acar C. Toktafl C. Laparoskopik cerrahinin temel fizyolojik etkileri. Turk Urol Sem 2010;1:119-125.
  • 8. Abe K, Hashimoto N, Taniguchi A, Yoshiya I. Middle cerebral artery blood flow velocity during laparoscopic surgery in head-down position. Surg Laparosc Endosc 1998;8:1-4.12.
  • 9. Fujii Y, Tanaka H, Tsuruoka S, Toyooka H,Amaha K. Middle cerebral arte-rial blood flow velocity increases during laparoscopic cholecystectomy. Anesth Analg 1994;78:80-3.13. 10. Huettemann E, Terborg C, Sakka SG, Petrat G, Schier F, Reinhart K. Preserved CO(2) reactivity and increase in middle cerebral arterial blood flow velocity during laparoscopic surgery in children. Anesth Analg 2002;94:255-8.
  • 11. Cho H, Nemoto EM, Yonas H, Balzer J, Sclabassi RJ. Cerebral monitoring by means of oximetry and somatosensory evoked potentials during ca-rotid endarterectomy. J Neurosurg 1998;89:533-8.
  • 12. de Waal EC, Vries JW, Kruitwagen CL, Kalkman CJ. The effects of low-pressure carbon dioxide pneumoperitoneum on cerebral oxygenation and cerebral blood volume in children. Anesth Analg. 2002;94:500–5.
  • 13. Asaad OM. Different ventilation techniques and hemodynamic optimization to maintain regional cerebral oxygen saturation (rScO2) during laparoscopic bariatric surgery: a prospective randomized interventional study.J Anesth. 2018;32(3):394-402.
  • 14. Meng L, Mantulin WW, Alexander BS. Head-up tilt and hyperventilation produce similar changes in cerebral oxygenation and blood volume: an observational comparison study using frequency domain near-infrared spectroscopy. Can J Anaesth. 2012;59:357–65.
  • 15. Kitajima T, Shinohara M, Ogata H. Cerebral oxygen metabolism measured by near-infrared laser spectroscopy during laparoscopic cholecystecomy with CO2 insufflation. Surg Lap Endo. 1996;6:210–2.
  • 16. Gipson CL, Johnson GA, Fisher R, et al. Changes in cerebral oximetry during peritoneal insufflation for laparoscopic procedures. J Minim Access Surg. 2006;2:67–72.
  • 17. Casati A, Fanelli G, Pietropaoli P, Proietti R, Tufano R, Montanini S. Monitoring cerebral oxygen saturation in elderly patients undergoing general abdominal surgery: a prospective cohort study. Eur J Anaesthesiol 2007;24:59–65.
  • 18. Hung YC, Huang CJ, Kuok CH, Chien CC, Hsu YWI. The effect of hemodynamic changes induced by prıpofol induction on cerebral oxygenation. J Clin Anesth 2005;17:353-7.
  • 19. Oztan MO, Aydın G, Çakar EB, Sutaş Bozkurt P, Köylüoğlu G. Effects of Carbon Dioxide Insufflation and Trendelenburg Position on Brain Oxygenation During Laparoscopy in Children. Surgia Laparosc Endosc Percutan Tech . 2019;29(2):90-94.
  • 20. Kaminey THE, Elmadhun NY, Kasper EM, Papavassiliou E,Schneider BE. Abdominal insufflation for laparoscopy increases intracranial and intrathoracic pressure in human subjects. Surg Endosc 2016;30:4029-4032.
  • 21. Magnaes B. Body position and cerebrospinal fluid pressure. Part 1: clinical studies on the effect of rapid postural changes. J Neurosurg 1976 44:687-97.
  • 22. Lovell AT, Marshall AC, Elwell CE, Smith M, Goldstone JC. Changes in cerebral blood volume with changes in position in awake and anesthetized subjects. Anesth Analg 2000;90:372-76.
  • 23. Kolb JC, Ainslie PN, Ide K, Poulin MJ. Procotocol to measure acute cerebrovascular and ventilatory responses to isocapnic hypoxia in humans. Respir Physiol Neurobiol 2004;141:191-199.
  • 24. Lovell AT, Owen-Reece H, Elwell CE, Smith M, Goldstone JC. Continuous measurement of cerebral oxygenation by near infrared spectroscopy during induction of anesthesia. Anesth Analg 1999;88:554-8.
  • 25. Picton P, Dering A, Alexander A, Neff M, Miller BS, Shanks A, Housey M, Mashour GA. Influence of Ventilation Strategies and Anesthetic Techniques on Regional Cerebral Oximetry in the Beach Chair Position: A Prospective Interventional Study with a Randomized Comparison of Two Anesthetics. Anesthesiology. 2015;123(4):765-74.
  • 26. Özgün A., Sargın A., Karaman S., Günüşen İ., Alper I., Aşkar F. Z. The relationship between the Trendelenburg position and cerebral hypoxia in patients who have undergone robot-assisted hysterectomy and prostatectomy. Turk J Med Sci 2017;47:1797-1803.
  • 27. O’Malley C, Cunningham AJ. Physiologic changes during laparoscopy. Anesthesiol Clin North Am 2001;1:1–18.
  • 28. Schramm P, Treiber AH, Berres M, Pestel G, Engelhard K, Werner C, Closhen D. Time course of cerebrovascular autoregulation during extreme Trendelenburg position for robotic-assisted prostatic surgery. Anaesthesia 2014;69:58–63.
  • 29. Pelizzo G, Carlini V, Iacob G, et al. Pediatric laparoscopy and adaptive oxygenation and hemodynamic changes. Pediatr Rep. 2017;9:21–25.
  • 30. Wobith M, Acikgöz A, Grosser K, Weimann A. Preoperative cognitive function in very old patients: Influence on the complication rate and length of hospitalization. Chirurg 2019;90:930–935.
  • 31. Colak Z, Borojevic M, Bogovic A, Ivancan V, Biocina B, Kogler VM, Influence of Intraoperative Cerebral Oximetry Monitoring on Neurocognitive Function After Bypass Surgery: a randomized, prospective study. Eur J Cardiothorac Surg 2015;47:447-54.
  • 32. Yao F.S. , Tseng C.C. , Ho C.Y. , Levin S.K, Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth 2004;18(5):552-558.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Original Investigation
Authors

Semra Cevher This is me 0000-0001-6145-5592

Asuman Sargın 0000-0003-1606-1548

Semra Karaman 0000-0003-0933-3090

Fatma Aşkar This is me 0000-0001-7237-574X

Publication Date December 9, 2021
Acceptance Date November 22, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

EndNote Cevher S, Sargın A, Karaman S, Aşkar F (December 1, 2021) JİNEKOLOJİK LAPAROSKOPİK OPERASYONLARDA İNTRAABDOMİNAL KARBONDİOKSİT İNSÜFLASYONUNA BAĞLI END-TİDAL KARBONDİOKSİT DEĞİŞİKLİKLERİ SEREBRAL OKSİJENİZASYONU ETKİLİYOR MU?. Ege Tıp Bilimleri Dergisi 4 3 84–93.

Creative Commons Lisansı


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.


13425                13428            13426            13433            13427