Araştırma Makalesi
BibTex RIS Kaynak Göster

Lokal ileri evre serviks kanserlerinde yoğunluk ayarlı radyoterapi ve volumetrik ayarlı ark tedavinin dozimetrik karşılaştırılması

Yıl 2018, Cilt: 57 Sayı: 2, 82 - 87, 01.06.2018
https://doi.org/10.19161/etd.414954

Öz

Amaç: Radyokemoterapi lokal ileri evre serviks kanserinin tedavisinde standart yaklaşımdır. Amacımız, serviks
kanseri tedavisinde modern tekniklerden yoğunluk ayarlı radyoterapi (YART) ve volumetrik ark terapi (VMAT)
tekniklerini dozimetrik olarak karşılaştırmaktır.

Gereç ve Yöntem: Kliniğimizde tedavi edilmiş 10 lokal ileri evre serviks kanseri hastasının bilgisayarlı tomografi
(BT)’leri kullanılmıştır. Hastalarda gross tümör hacmi (GTV), klinik tümör hacmi (CTVtm) ve lenf nodları (CTV lenf
nodu) ve komşu risk altındaki organları konturlanmıştır. CTVtm ve CTV lenf nodlarına 1.5 cm sınır verilerek tedavi
hacimleri oluşturulmuştur. Total doz 50.4 Gy olacak şekilde günlük 1.8 Gy fraksiyon dozu ile tedavi planlamaları
yapılmıştır. İki teknik, Doz volüm histogramı, homojenite indeks (HI), konformite indeks (KI), monitör ünit (MU),
segment sayısı değerlendirmeleri yapılmıştır.


Bulgular: İnce bağırsak için, 40 Gy doz alan hacim yüzdeliğinin YART tekniğinde medyan değeri %14.24 iken,
VMAT tekniğinde %11.28 olarak hesaplanmıştır (p=0.022). VMAT tekniğinde %12.39 olarak hesaplanan femur
başları 30 Gy doz alan hacim değerleri, YART tekniğinde ortanca değeri %7.80 olarak bulunmuştur (p=0.007). VMAT
tekniği istatistiksel anlamlı seviye kısa sürede tamamlanırken, fraksiyon başına MU değeri anlamlı olarak fazla
bulunmuştur. Her iki tedavi tekniğinin de HI ve KI değerleri açısından aralarında farklılık gösterilememiştir.
Sonuç: Hasta konforuna ve cihaz performansına açısından VMAT tekniğinde kısa tedavi süresi avantaj olarak
görülmektedir. Kliniğimizin mevcut cihaz durumuna göre her iki tedavi modeli de kullanılabilir

Kaynakça

  • Acun H, Kemikler G, Çakır A, Tuncay E, Ağaoğlu F, Darendeliler E. Statik IMRT (step and shoot) yöntemine göre oluşturulan IMRT planlarının dozimetrik doğrulanmasına segment sayısının etkisi. Türk Onkoloji Dergisi 2011;26(1):18-20.
  • Bar W, Alber M, Nüsslin F A variable fluence step clustering and segmentation algorithm for step and shoot IMRT. Phys Med Biol 2001;46(7):1997-2007.
  • Bedford JL, Lee YK, Wai P, South CP, Warrington AP. Evaluation of the Delta4 phantom for IMRT and VMAT verification. Phys Med Biol 2009;7;54(9):167-76.
  • Bedford JL, Warrington AP Commissioning of volumetric modulated arc therapy (VMAT). Int J Radiat Oncol Biol Phys 2009;73(2):537-45.
  • Beriwal S, Jain SK, Heron DE, de Andrade RS, Lin CJ, Kim H. Dosimetric and toxicity comparison between prone and supine position IMRT for endometrial cancer. Int J Radiat Oncol Biol Phys 2007;67(2):485-9.
  • Bortfeld T, Webb S. Single-Arc IMRT? Phys Med Biol 2009;7;54(1):9-20.
  • Cozzi L, Dinshaw KA, Shrivastava SK, et al. A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol 2008;89(2):180-91.
  • Fippel, M. Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 1999;26(8):1466-75.
  • Fippel M, Haryanto F, Dohm O, Nüsslin F, Kriesen S. A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 2003;30(3):301-11.
  • Fong, Y. Crumley, C. Planning feasibility study comparing 3DCRT, IMRT and RapidArc in patients with gynecological cancers. BC Cancer Agency 2004;22(5):166-78.
  • Grofsmid D, Dirkx M, Marijnissen H, Woudstra E, Heijmen B. Dosimetric validation of a commercial Monte Carlo based IMRT planning system. Med Phys 2010;37(2):540-9.
  • Jeleń U, Alber M A finite size pencil beam algorithm for IMRT dose optimization: Density corrections. Phys Med Biol 2007;7;52(3):617-33.
  • Jeleń U, Söhn M, Alber M. A finite size pencil beam for IMRT dose optimization. Phys Med Biol 2005;21;50(8):1747-66.
  • Guo S, Ennis RD, Bhatia S, et al. Assessment of nodal target definition and dosimetry using three different techniques: Implications for re-defining the optimal pelvic field in endometrial cancer. Radiat Oncol 2010;27;5:59.
  • Kawrakow I, Fippel M. Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC. Phys Med Biol 2000;45(8):2163-83.
  • Khan, FM. The Physics of Radiation Therapy, 3rd ed. Philadelphia; Lippincott Williams&Wilkins 2014.
  • Lim K, Small W Jr, Portelance L, et al. Gyn IMRT Consortium consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys 2011;1;79(2):348-55.
  • McGary JE, Grant W 3rd, Woo SY, Butler EB. Reporting and analyzing dose distributions: A concept of equivalent uniform dose. Med Phys 1997;24(8):1323-4.
  • Monaco Traing Guide. Available from: https://tr.scribd.com/document/210743768/MonacoTrainingGuide.
  • Nakamura JL, Verhey LJ, Smith V, et al. Dose conformity of gamma knife radiosurgery and risk factors for complications. Int J Radiat Oncol Biol Phys 2001;1;51(5):1313-9.
  • Ozsaran Z, Yalman D, Yürüt V, et al. Lokal ileri evre serviks kanseri tanısı ile radyokemoterapi uygulanan olgularda erken sonuçlar. Ege Tıp Dergisi 2002, 41, (3), 157-62.
  • Park DH, Shin D, Park SY, et al. Optimized matching of film dosimetry with calculated doses for IMRT quality assurance. Phys Med 2007;23(2):49-57.
  • Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Available from: https://www.aapm.org/pubs/reports/RPT_105.pdf
  • Rao M, Yang W, Chen F, et al. Comparison of elekta VMAT with helical tomotherapy and fixed field IMRT: Plan quality, delivery efficiency and accuracy. Med Phys 2010;37(3):1350-9.
  • Rao M, Cao D, et al. Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT. Phys Med Biol 2010;7;55(21):6475-90.
  • Semenenko VA, Reitz B, Day E, Qi XS, Miften M, Li XA. Evaluation of a commercial biologically based IMRT treatment planning system. Med Phys 2008;35(12):5851-60.
  • The International Commission on Radiation Units and Measurements ICRU 83 Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). Available from: https://www.fnkv.cz/soubory/216/icru-83.pdf
  • Thieke C, Bortfeld T, Niemierko A, Nill S. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning. Med Phys 2003;30(9):2332-9.
  • Verbakel WF, Senan S, Lagerwaard FJ, Cuijpers JP, Slotman BJ. Comments on 'Single-Arc IMRT?'. Phys Med Biol 2009;21;54(8):31-4.
  • Wu Q, Mohan R, Niemierko A, Schmidt-Ullrich R. Optimization of intendity modulated radiotheraphy plans based on the equivalent uniform dose Int J Radiat Oncol Biol Phys 2002; 1;52(1):224-35.

The dosimetric comparison of ıntensity modulated radiotherapy and volumetric arc therapy in locally advanced uterine cervix cancer

Yıl 2018, Cilt: 57 Sayı: 2, 82 - 87, 01.06.2018
https://doi.org/10.19161/etd.414954

Öz

Aim: The standard treatment approach for locally advanced stage uterine cervix cancer is radio-chemotherapy. New
radiotherapy techniques provide appropriate dose distributions with maximum tumor dose and minimum organ at risk
doses. We aim to compare intensity modulated radiotherapy (IMRT) and volumetric arc therapy techniques in the
cervix cancer treatment.

Materials and Methods: Ten computed tomographies (CT) of treated patients were used. Gross tumor volume
(GTV), clinical tumor volume (CTV) both for tumor and lymph nodes and organ at risks were contoured. Treatment
volumes were created by adding 1.5 cm margins to CTV tumor and lymph nodes. Totally 50.4 Gy doses with 1.8 Gy
daily fraction were applied. Two techniques were compared in terms of dose volume histograms, homogenity index
(HI), conformity Index (CI), monitory unit (MU) and segment numbers.


Results: For intestines, V40 Gy were 14.24% and 11.28% with IMRT and VMAT, respectively (p=0.022). For femoral
heads, V30 Gy were 7.8% and 12.39% with IMRT and VMAT, respectively (p=0.007). The duration time of treatment
was significantly short but MU value for each fraction was significantly high with VMAT technique. On the other hand,
there could not find any difference in terms of HI and CI between two techniques.

Conclusion: The shortness of treatment duration can be seen as an advantage in terms of both patient comfort and
machine performance in VMAT technique. IMRT and VMAT can be preferred for the treatment of locally advanced
cervix cancer by taking into the conditions of our department.

Kaynakça

  • Acun H, Kemikler G, Çakır A, Tuncay E, Ağaoğlu F, Darendeliler E. Statik IMRT (step and shoot) yöntemine göre oluşturulan IMRT planlarının dozimetrik doğrulanmasına segment sayısının etkisi. Türk Onkoloji Dergisi 2011;26(1):18-20.
  • Bar W, Alber M, Nüsslin F A variable fluence step clustering and segmentation algorithm for step and shoot IMRT. Phys Med Biol 2001;46(7):1997-2007.
  • Bedford JL, Lee YK, Wai P, South CP, Warrington AP. Evaluation of the Delta4 phantom for IMRT and VMAT verification. Phys Med Biol 2009;7;54(9):167-76.
  • Bedford JL, Warrington AP Commissioning of volumetric modulated arc therapy (VMAT). Int J Radiat Oncol Biol Phys 2009;73(2):537-45.
  • Beriwal S, Jain SK, Heron DE, de Andrade RS, Lin CJ, Kim H. Dosimetric and toxicity comparison between prone and supine position IMRT for endometrial cancer. Int J Radiat Oncol Biol Phys 2007;67(2):485-9.
  • Bortfeld T, Webb S. Single-Arc IMRT? Phys Med Biol 2009;7;54(1):9-20.
  • Cozzi L, Dinshaw KA, Shrivastava SK, et al. A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol 2008;89(2):180-91.
  • Fippel, M. Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 1999;26(8):1466-75.
  • Fippel M, Haryanto F, Dohm O, Nüsslin F, Kriesen S. A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 2003;30(3):301-11.
  • Fong, Y. Crumley, C. Planning feasibility study comparing 3DCRT, IMRT and RapidArc in patients with gynecological cancers. BC Cancer Agency 2004;22(5):166-78.
  • Grofsmid D, Dirkx M, Marijnissen H, Woudstra E, Heijmen B. Dosimetric validation of a commercial Monte Carlo based IMRT planning system. Med Phys 2010;37(2):540-9.
  • Jeleń U, Alber M A finite size pencil beam algorithm for IMRT dose optimization: Density corrections. Phys Med Biol 2007;7;52(3):617-33.
  • Jeleń U, Söhn M, Alber M. A finite size pencil beam for IMRT dose optimization. Phys Med Biol 2005;21;50(8):1747-66.
  • Guo S, Ennis RD, Bhatia S, et al. Assessment of nodal target definition and dosimetry using three different techniques: Implications for re-defining the optimal pelvic field in endometrial cancer. Radiat Oncol 2010;27;5:59.
  • Kawrakow I, Fippel M. Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC. Phys Med Biol 2000;45(8):2163-83.
  • Khan, FM. The Physics of Radiation Therapy, 3rd ed. Philadelphia; Lippincott Williams&Wilkins 2014.
  • Lim K, Small W Jr, Portelance L, et al. Gyn IMRT Consortium consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys 2011;1;79(2):348-55.
  • McGary JE, Grant W 3rd, Woo SY, Butler EB. Reporting and analyzing dose distributions: A concept of equivalent uniform dose. Med Phys 1997;24(8):1323-4.
  • Monaco Traing Guide. Available from: https://tr.scribd.com/document/210743768/MonacoTrainingGuide.
  • Nakamura JL, Verhey LJ, Smith V, et al. Dose conformity of gamma knife radiosurgery and risk factors for complications. Int J Radiat Oncol Biol Phys 2001;1;51(5):1313-9.
  • Ozsaran Z, Yalman D, Yürüt V, et al. Lokal ileri evre serviks kanseri tanısı ile radyokemoterapi uygulanan olgularda erken sonuçlar. Ege Tıp Dergisi 2002, 41, (3), 157-62.
  • Park DH, Shin D, Park SY, et al. Optimized matching of film dosimetry with calculated doses for IMRT quality assurance. Phys Med 2007;23(2):49-57.
  • Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Available from: https://www.aapm.org/pubs/reports/RPT_105.pdf
  • Rao M, Yang W, Chen F, et al. Comparison of elekta VMAT with helical tomotherapy and fixed field IMRT: Plan quality, delivery efficiency and accuracy. Med Phys 2010;37(3):1350-9.
  • Rao M, Cao D, et al. Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT. Phys Med Biol 2010;7;55(21):6475-90.
  • Semenenko VA, Reitz B, Day E, Qi XS, Miften M, Li XA. Evaluation of a commercial biologically based IMRT treatment planning system. Med Phys 2008;35(12):5851-60.
  • The International Commission on Radiation Units and Measurements ICRU 83 Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). Available from: https://www.fnkv.cz/soubory/216/icru-83.pdf
  • Thieke C, Bortfeld T, Niemierko A, Nill S. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning. Med Phys 2003;30(9):2332-9.
  • Verbakel WF, Senan S, Lagerwaard FJ, Cuijpers JP, Slotman BJ. Comments on 'Single-Arc IMRT?'. Phys Med Biol 2009;21;54(8):31-4.
  • Wu Q, Mohan R, Niemierko A, Schmidt-Ullrich R. Optimization of intendity modulated radiotheraphy plans based on the equivalent uniform dose Int J Radiat Oncol Biol Phys 2002; 1;52(1):224-35.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Berna Nalbant 0000-0003-0446-9597

Fatma Sert 0000-0001-6052-8614

Emin Tavlayan 0000-0003-0177-1571

Nezahat Olacak 0000-0002-0700-0420

Zeynep Özsaran 0000-0003-4362-3542

Yayımlanma Tarihi 1 Haziran 2018
Gönderilme Tarihi 23 Şubat 2017
Yayımlandığı Sayı Yıl 2018Cilt: 57 Sayı: 2

Kaynak Göster

Vancouver Nalbant B, Sert F, Tavlayan E, Olacak N, Özsaran Z. Lokal ileri evre serviks kanserlerinde yoğunluk ayarlı radyoterapi ve volumetrik ayarlı ark tedavinin dozimetrik karşılaştırılması. ETD. 2018;57(2):82-7.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519