PRENATAL DIAGNOSIS OF TRISOMY 13: A CASE REPORT

TRIZOMI 13'ÜN PRENATAL TANISI: OLGU SUNUMU

Rafael LEVI¹ Şaban ADAKAN¹ Mustafa Coşan TEREK² Murat ULUKUŞ² Mustafa ULUKUŞ² Erol TAVMERGEN¹²

¹Ege University Family Planning Infertility Research and Treatment Center, İzmir, Turkey
²Ege University Faculty of Medicine Department of Obstetrics and Gynecology, İzmir, Turkey

Anahtar Sözcüklər: Kromozomal anomaliler, trizomi 13, prenatal tanı
Key Words: Chromosomal anomalies, trisomy 13, prenatal diagnosis

ÖZET


ABSTRACT

We report a 30 years-old primary infertile patient who conceived after intrauterine insemination. The prenatal screening test for chromosomal anomalies showed an increased risk for trisomy 21 at 75* gestational week. Amniotic fluid cytogenetic examination and karyotype of the cells obtained from the umbilical cord confirmed the diagnosis of trisomy 13.

INTRODUCTION

The incidence of trisomy 13 increases with advanced maternal age. Trisomy 13 is a clinically significant autosomal trisomy. Its total prevalence is 1.91 per 10.000 births. It results in recognizable patterns of malformations such as ventricular septal defect, urinary tract anomalies, omphalocele, central nervous system abnormalities, cleft palate-lip, microphthalmy and polydactily. Stillbirths and neonatal deaths are common. Still it is inaccurate to characterize this disorder as lethal because 38% trisomy 13 children were living at age one year. This decreases to 3-5% by age 5 year. Profound mental retardation is associated with trisomy 13. In vitro fertilization and embryo transfer pregnancies are characterized by an increased-frequency of cytogenetic abnormalities found at prenatal diagnosis. Second trimester maternal serum alpha-fetoprotein, unconjugated estriol, and human chorionic gonadotropine levels are not useful in detecting fetal trisomy 13 and protocols are already existing for Down syndrome or trisomy 18 screening will not detect the majority of cases of this aneuploidy (1).

CASE

A 30-year-old primary infertile patient conceived after intrauterine insemination. She had a history of primary infertility for two years. The prenatal screening test for chromosomal anomalies showed an increased risk for trisomy 21 at the 15th gestational week. The ultrasonographic evaluation of the fetus including the amniotic fluid index and the nuchal translucency (NT) was in normal
range at same week. Amniotic fluid cytogenetic examination revealed the karyotype 47,XY, + 13 on 15 cells, no mosaicism was seen. Karyotype of the cells obtained by cordocentesis demonstrated same result with the amniotic fluid cytogenetic examination. The pregnancy was terminated by the misoprostol administration at 23rd gestational week. Macroscopic evaluation of the fetus showed bilateral cleft palate-lip (Figure 1).

Figure 1. Macroscopic appearance of the fetus showing cleft palate and lip.

DISCUSSION

Very few autosomal trisomies survive to birth, the three most common being those for chromosome 13, 18 and 21 giving rise to syndromes Patau, Edwards and Down respectively (2). Trisomy 13 is the third most common trisomy and at 10-14 weeks of gestation the relative proportion of trisomy 21 to trisomy 13 is about eight to one (3). The total prevalence of trisomy 13 is 1,91 per 10,000 births (4).

The birth of an infant with a chromosomal abnormality such as trisomy 18, 13, Wolf-Hirschhorn (4p-) syndrome, Cri-du-chat (5p-) syndrome and the microdeletion syndromes creates a stressful and devastating experience for families. Many of these disorders have severe consequences encompassing major malformations and mental retardation (5).

Not only the amniotic fluid cytogenetic examinations and the karyotype of the cells obtained from the umbilical cord but also the rapid florescent in situ hybridization analysis of interphase and high resolution ultrasound examinations are useful to determine genetic disorders. Feldman et al (6) conclude that the rapid florescent in situ hybridization analysis of interphase, uncultured fetal cells is an accurate and very sensitive method for routine prenatal diagnosis of the most common aneuploidies in high risk pregnancies. In recent years the measurement of fetal nuchal translucency in the first trimester became a routine screening test for chromosomal abnormalities. Jemmali et al (7) demonstrated that nuchal translucency greater than 2.5 mm between 10 and 14 weeks’ gestation is a sonography sign associated with 7.4% of chromosomal anomalies. In recent years screening of both maternal serum free [3-hCG and pregnancy-associated plasma protein A (PAPP-A) also became popular for the prediction of fetal trisomies in early pregnancy. Spencer et al (8) demonstrated that in trisomy 13 patients at 10-14 weeks of gestation both of this laboratory parameters are decreased and that fetal nuchal translucency is increased. Despite all these progressions, prenatal diagnosis of trisomy 13 remains possible only by obtaining fetal cells for karyotype analyses. A good screening test with high predictive values is not available at the present time.

REFERENCES