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Abstract: The purpose of this study was to identify and describe members of the phytochrome-interacting factors (PIFs) gene 
family including the basic helix loop helix (bHLH) binding site in Phaseolus vulgaris plants, as well as to investigate their 
responses to salt and drought stress. Various tools of in silico approaches were used to identify five Pvul-PIF gene families in 
the P. vulgaris genome. This gene family contained 324 to 726 amino acids and has molecular weights ranging from 35.11 
kDa to 77.67 kDa. The theoretical isoelectric points range from 6.03 (Pvul-PIF-3.3) to 8.30 (Pvul-PIF-3.2). Pvul-PIF proteins 
were shown to be clustered in three main groups with Arabidopsis thaliana, Populus trichocarpa, Solanum lycopersicum, Zea 
mays, Arachis hypogaea L., Oryza sativa, Vitis vinifera, Glycine max, and Phaseolus vulgaris species as a result of the 
phylogenetic study. Segmental duplication was detected between Pvul-PIF-3.2, Pvul-PIF-3.3 and Pvul-PIF-3.1 genes, Pvul-
PIF-4.1 and Pvul-PIF-4.2 genes and Pvul-PIF-3.3 and Pvul-PIF-3.1 genes. When the expression patterns of the Pvul-PIF 
genes were examined, it was observed that they had different levels of expression under salt and drought stress and that they 
may be involved in specific biological and molecular processes in response to different abiotic and biotic stresses. The results 
of this research, which were established for the first time in response to salt and drought stress in P. vulgaris of the PIF gene 
family, will be a valuable source of knowledge and additional information in the fields of plant biotechnology, agricultural 
biotechnology, and molecular biology. 
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1. Introduction 
Phaseolus vulgaris L. (common beans) belonging 
to the Fabaceae (legume) family plays a key part in 
supplying the nutritional requirements of the 
world’s growing population. It is also a significant 
protein source in human nutrition (De Ron et al., 
2015). Legumes are the world’s third biggest plant 
family, with 640 genera divided into 40 orders 
(Büyük, 2014). Of all major food crops, the plant 
with the most variability in the growing medium, 
seed quality, and maturity period is common beans. 
Due to its adaptability, it could be cultivated in a 
variety of agricultural systems and ecosystems, 
including Europe, Africa, China, the Americas, and 

the Middle East (Blair et al., 2010). Although beans 
can be grown as fresh broad beans and grains, they 
are mostly produced and consumed as dried grains. 
Because of their health benefits and potential to 
prevent illnesses in humans, beans have lately 
acquired favor as a functional meal. When included 
in diets, it has also been linked to a decreased risk 
of cardiac disease, diabetes, obesity, and breast, 
intestinal, and prostate cancers (Correa, 1981; 
Hangen and Bennink, 2002; Thompson et al., 
2009). The high fiber and starch content, ability to 
handle glycemia and digestive function and 
antioxidant characteristics supplied by phenolic 
compounds and proteins are all factors that 
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contribute to these health benefits (De Ron et al., 
2015). 

Drought occurrences are expected to cause 
considerable losses in atmospheric evaporation, 
which are expected to grow significantly due to 
changing climatic conditions (Teuling et al., 2013). 
Due to the obvious inability to deliver the water 
required for agricultural productivity growth and 
development, yield losses will occur. In this 
context, it is critical to conduct urgent 
investigations on the drought tolerance of plants 
that are intended to be used in agricultural areas. 
This issue has been examined by many researchers 
(Carnicer et al., 2011; Peng et al., 2011; Park 
Williams et al., 2013; Vicente-Serrano et al., 2014).  

Plants adapt to physiological and metabolic 
changes in the least harmful way feasible depending 
on the abiotic stress (Kalefetoğlu and Ekmekçi, 
2005). However, despite the fact that these changes 
under abiotic stress conditions have been studied for 
many years, the processes behind them are still 
unknown. To better understand how plants respond 
to drought stress and enhance the tolerance of 
agriculturally important plants to diverse pressures, 
more research and creative approaches are needed 
(Örs and Ekinci, 2015). 

At both cellular and plant levels, the tolerance of 
plants to salt stress is extremely complicated. 
Numerous morphological, physiological, and 
metabolic changes take place throughout the 
defense process (Ashraf and Harris, 2004). 
Especially plant physiology is negatively impacted 
by salinity in three main ways. As a result of the 
elevated sodium ion concentration, protein 
synthesis, enzyme activity, photosynthesis, and 
respiration are all inhibited as well as cellular 
organelles are damaged. Second, salt inhibits the 
uptake of nutrients from the soil, leading to a 
nutrient imbalance. Third, salinity lowers the 
osmotic potential of soil and hinders roots from 
absorbing water, which causes a physiological 
drought in the plant (Ruiz-Lozano et al., 2012). 

Light not only acts as a signal playing a 
significant role in plant development, but it also 
generates energy for photosynthesis and regulates a 
wide range of photomorphogenesis and shadow 
aversion including physiological processes (Casal 
et al., 2014; Xu et al., 2015). Numerous major 
elements participating in light signal transmission 
channels have been discovered during the last two 
decades utilizing genetic and molecular techniques 
(Pham et al., 2018). Phytochromes function 
similarly to photoreceptors, receiving and 
transmitting red and far-red light signals to govern 
a variety of plant growth and developmental 
processes such as seed de-etiolation, seed 

germination, and flowering (Shin et al., 2016; Han 
et al., 2017). Phytochromes are generated in the 
cytoplasm and transported to the nucleus after being 
exposed to red light, where they interact with 
numerous phytochrome-interacting proteins to 
activate light signaling cascades (Paik and Huq, 
2019). 

Phytochrome-interacting factor (PIF), a 
member of the basic helix loop helix transcription 
factor (bHLH TF) subgroup, has been demonstrated 
to be a major transcriptional controller in response 
to environmental and light changes (Hao et al., 
2021). Because of the rapid development of high-
throughput sequencing methods and the increasing 
number of available genome sequences, bHLH TF 
has been discovered in genes of various PIF family 
members ranging from low plants to higher plants. 
For instance, one MpPIF gene in Marchantia 
polymorpha (Inoue et al., 2016), and seven different 
ZmPIF genes in maize (Gao et al., 2019; Wu et al., 
2019) have been characterized. In A. thaliana,            
8 AtPIF genes were discovered (Lee and Choi, 
2017), and these genes were observed to be more 
studied than PIF genes discovered and defined in 
other plants. Extensive research and investigations 
have indicated that the members of the PIF gene 
family in A. thaliana play many key roles in the 
physiological phases of plants and that plants may 
adapt to changing environmental conditions via 
different signaling pathways, along with light, 
hormones, and abiotic stresses like cold, drought, 
and salt (de Lucas and Prat, 2014; Lin et al., 2018; 
Xu, 2018). 

Regardless of the fact that the PIF gene family 
is vital in light signaling pathways, the role of PIF 
in beans under drought and salinity stresses has not 
been functionally described. Therefore, this study 
aimed to identify and describe members of the PIFs 
gene family including the bHLH binding site in       
P. vulgaris plants, as well as to investigate their 
responses to salt and drought stress. 

 
2. Materials and Methods 
2.1. Identification, sequence alignment, and 

phylogenetic analysis of PIF proteins in the 
bean genome  
The protein sequences of the PIF gene family in 

the P. vulgaris genome (Schmutz et al., 2014) were 
received from the Phytozome database v13 
(Anonymous, 2021a) with the Pfam Accession 
Number (PF00010) from the Pfam database 
(Anonymous, 2021b). P. vulgaris, Populus 
trichocarpa (Tuskan et al., 2006), Oryza sativa 
(Ouyang et al., 2007), Vitis vinifera (Jaillon et al., 
2007), Arabidopsis thaliana (Lamesch et al., 2012), 
Glycine max (Valliyodan et al., 2019), Arachis 
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hypogaea (Bertioli et al., 2019) Solanum 
lycopersicum (Hosmani et al., 2019), and Zea mays 
(Bornowski et al., 2021) were used in both the 
blastp in the Phytozome database v13 and the 
Hidden Markov Model (HMM) (Anonymous, 
2021c) to discover all potential PIF proteins. Using 
the HMMER database (Anonymous, 2021d), the 
existence of the PIF domain in the related 
sequences was explored. The ProtParam tool 
(Anonymous, 2021e) was used to calculate the 
molecular weight, amino acid number, and 
isoelectric point (pI) of the obtained PIF proteins.  

After alignment of the Pvul-PIF protein 
sequences with ClustalW (Thompson et al., 1997), 
the phylogenetic tree was generated in MEGA v11 
(Tamura et al., 2021) using the Neighbor-Joining 
tree (1000 repeated bootstrap value and Poisson 
model) method. The Interactive Tree of Life (iTOL) 
v6 interface was used to visualize the phylogenetic 
tree (Letunic and Bork, 2011). 
 
2.2. Structure of Pvul-PIF genes, physical 

locations, gene duplications, comparative 
mapping, and identification of conserved 
motifs 
Pvul-PIF proteins exon-intron regions were 

investigated using Gene Structure Display Server 
v2.0 (Hu et al., 2015). 

The Phytozome database v13 was used to find 
the chromosomal locations of the PIF gene. Pvul-
PIF genes were identified and mapped on all             
P. vulgaris chromosomes using MapChart. 
(Voorrips, 2002). Gene duplications between            
P. vulgaris, G. max, and A. thaliana were identified 
using the MCScanX Toolkit (Wang et al., 2012). 
The substitution rates between duplicate pairs of 
Pvul-PIF genes for non-homologous (Ka), 
homologous (Ks), and non-homologous to 
homologous (Ka/Ks) were calculated using the 
PAL2NAL (Suyama et al., 2006) interface tools in 
PAML software (Yang, 2007). A synteny map of 
the PIF genes discovered in P. vulgaris, G. max, 
and A. thaliana was created using the TBtools 
software (Chen et al., 2020). Then, the time of 
duplication and cleavage of each PIF gene (million 
years ago) was calculated according to the 
following Equation 1 (Yang and Nielsen, 2000; 
Lynch and Conery, 2003). The λ value used in 
Equation 1 was 6.56E-9. 

T = 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾/2λ                     (1) 

The Multiple Em for Motif Elicitation (MEME) 
Suite was used to find conserved motifs in Pvul-PIF 
proteins (Bailey et al., 2006). The MEME Suite tool 
was adjusted site distribution, motif count, motif 
sites, and, motif width to any number of repeats, 10, 
the most 300 sites and, between 6-50 wide, 

respectively. The detected motifs were scanned 
using the InterProScan with default parameters 
(Quevillon et al., 2005). In addition, using the 
WebLogo online web tool, sequence logo analysis 
of PIF domains for conserved area sequence 
analysis was created (Crooks et al., 2004). 

 
2.3. Promoter analysis and subcellular 

localization of the bean PIF gene family 
Using the PlantCARE (Lescot et al., 2002) web 

interface, cis-acting element analysis was 
performed for each gene separately after reaching 
the 2000 bp (base pair) upstream regions of the 
Pvul-PIF genes using the Phytozome database v13. 
TBTools (Chen et al., 2020) were used to build the 
phenogram. WoLF PSORT was used to determine 
their subcellular localizations (Horton et al., 2007). 

 
2.4. Homology modeling of PIF proteins in 

common bean 
The PIF protein sequences were found and 

uploaded into the Phyre2 database, and all Pvul-PIF 
proteins were estimated by 3D modeling (Kelley et 
al., 2015). Protein models with a confidence level 
of more than 95% were visualized.  

 
2.5. Pvul-PIF protein-protein interactions (PPI)  

The STRING database (Anonymous, 2021f) 
was utilized to determine protein-protein 
interactions at a physical, functional, and 
experimental level. The Cytoscape (Shannon et al., 
2003) program was used to classify and show the 
data obtained.  

 
2.6. In silico gene expression analysis 

The Sequence Read Archive (SRA) data library 
in The National Center for Biotechnology 
Information (NCBI) database was used to obtain 
Illumina RNA-seq data. To find relevant RNA-seq 
data, we used accession numbers for salt and 
drought stress. Salt stress-treated leaf 
(SRR957668), leaf salt control (SRR958469) (Hiz 
et al., 2014), drought stress-treated leaf 
(SRR8284481), and leaf drought control 
(SRR8284480) (Anonymous, 2021g) were used. 
The Read per Kilobase (RPKM) method was used 
to normalize gene expression levels (Mortazavi et 
al., 2008). A heatmap was drawn using the 
CIMMiner tool (Anonymous, 2021h). 

 
3. Results and Discussion 
3.1. PIF gene family characteristics discovered 

in the P. vulgaris genome 
The members of the PIF gene family were 

searched in the P. vulgaris genome found in the 
Phytozome database v13 utilizing the PFAM 
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accession number (PF00010). As an outcome of this 
research, 5 PIF genes were discovered in the 
common bean genome. The chromosome locations 
of the Pvul-PIF genes, as well as their start and end 
position, protein lengths, isoelectric points, 
molecular weights, instability indices, and 
intracellular localization was given in Table 1. In 
the bean genome, the identified Pvul-PIF genes 
have been located on chromosomes 1, 6, 7, and 8 
(Figure 1). PIF proteins have a length of 324-726 
amino acids. With 726 residues, Pvul-PIF-3.3 has 
the most amino acids, whereas Pvul-PIF-3.1 has the 
lowest, with 324 residues. Furthermore, all of the 
discovered genes were found to be unstable, with 
instability indices ranging from 45.38 to 62.93. 
Except for Pvul-PIF-3.1 and -3.2, theoretical 
isoelectric  points  of  all  genes were         found to be in  

 
 

the acidic range, and it is ranging from 6.04 to 8.30. 
PIF proteins have a molecular weight of 35.11-
77.67 kDa. Pvul-PIF-3.3 had the largest molecular 
weight as 77.67 kDa, while Pvul-PIF-3.1 had the 
lowest as 35.11 kDa. As seen in Table 1, the 
subcellular locations of PIF genes were detected in 
different cell components such as the chloroplast, 
cell membrane, and cytoskeleton, according to data 
obtained from the WoLF PSORT database. In the 
PIF gene family, which has been characterized and 
identified genome-wide in different species, 8 in S. 
lycopersicum (Rosada et al., 2016), 8 in A. thaliana 
(Lee and Choi, 2017), 4 in V. vinifera (Zhang et al., 
2018), 15 in Z. mays (Shi et al., 2018), 14 in G. max 
(Arya et al., 2018), 30 in Brassica napus, 12 in 
Brassica rapa, and 18 in Brassica oleracea (Li et 
al., 2021), and 14 PIF genes in Arachis hypogaea 
(Wang et al., 2021) were identified. 

 
Table 1. The 5 Pvul-PIF identified in Phaseolus vulgaris L. and their sequence characteristics 

  Gene name Phytozome ID Chn Start   End Strand AA  
 length 

   MW  
   (kDa) pI Instability 

index (WolfPsort)* 

Pvul-PIF-3.2 Phvul.001G218800 Chr01  47432918  47435728 Forward 549    61.25 8.30 56.04 nucl: 9, chlo: 3, 
plas: 1, cysk: 1 

Pvul-PIF-4.1 Phvul.006G028500 Chr06  10725080  10730961 Forward 550    60.92 6.21 57.98 nucl: 14 
Pvul-PIF-3.1 Phvul.007G208500 Chr07  33081018  33083312 Reverse  324    35.11 8.17 45.38 nucl: 14 
Pvul-PIF-3.3 Phvul.007G206000 Chr07  32844497  32849427 Forward 726    77.67 6.04 58.24 nucl: 14 
Pvul-PIF-4.2 Phvul.008G196800 Chr08  54108236  54113590 Forward 549    60.64 6.15 62.93 nucl: 14 

*WoLF PSORT predictions: chlo: Chloroplast, nucl: Nucleus, plas: Plasma membrane, cysk: Cytoskeleton, Chn: Chromosome number, AA: Aminoacid, 
MW: Molecular weight, pI: Theoretical isoelectric point 

 
 

 
Figure 1. Chromosomal distributions of Pvul-PIF 

genes  
Purple and orange colors indicate segmental duplication between 

 Pvul-PIF genes 

 

As a result of gene duplication analysis, Pvul-
PIF3.2/Pvul-PIF3.3, Pvul-PIF3.2/Pvul-PIF3.1, 
Pvul-PIF4.1/Pvul-PIF4.2, and Pvul-PIF3.3/Pvul-
PIF3.1 were identified as segmentally-duplicated 
gene pairs and Ka, Ks and Ka/Ks ratios are shown 
in Table 2. Positive selection in the evolutionary 
process is indicated by a Ka/Ks value larger than 1, 
purifying selection is indicated by a Ka/Ks value 
less than 1, and natural selection in duplication 
events is indicated by a Ka/Ks value equal to 1 
(Juretic et al., 2005; Kasapoğlu et al., 2020). 

 
3.2. Interspecies phylogenetic analysis of Pvul-

PIF proteins, conserved motif, and gene 
structure display 
PIF protein sequences from P. vulgaris,               

A. thaliana, G. max, P. trichocarpa, V. vinifera,       
Z. mays, O. sativa, S. lycopersicum, and                       
A. hypogaea species were utilized to create a 
phylogenetic tree to analyze the evolutionary 
relationship            of PIF  gene  family.  The phylogenetic  

Table 2. Gene duplications of Pvul-PIF genes 
 Gene 1     Gene 2  Ka Ks Ka/Ks MYA Selection pressure Duplication type 

Pvul-PIF-3.2 Pvul-PIF-3.3 0.82 9.77 0.08 577.8 purifying segmental 
Pvul-PIF-3.2 Pvul-PIF-3.1 0.38 1.37 0.28 81.24 purifying segmental 
Pvul-PIF-4.1 Pvul-PIF-4.2 0.22 0.53 0.42 31.43 purifying segmental 
Pvul-PIF-3.3 Pvul-PIF-3.1 0.66 0.66 0.14 265.6 purifying segmental 

MYA: Million years ago   
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tree of 43 PIF proteins from nine plant species was 
analyzed using the MEGA 11 software and the 
Neighbor-Joining: NJ method. PIF proteins were 
divided into three groups, as indicated in Figure 2. 
A close relationship between A. thaliana, Z. mays, 
G. max, A. hypogaea, and Pvul-PIF-3.1 and Pvul-
PIF-3.2 proteins in Group A was observed. Pvul-
PIF-3.3 and S. lycopersicum, A. hypogaea,                 
P. trichocarpa, V. vinifera, G. max proteins showed 
orthology in Group B. It was observed to be a close 
relationship between Z. mays and O. sativa proteins  

and Pvul-PIF-4.1 and Pvul-PIF-4.2 proteins in 
Group C separately from other groups. The 14 
AhPIFs genes identified in the phylogenetic tree 
classification of the peanut (A. hypogaea) were 
divided into four groups according to Wang et al. 
(2021), and the genes associated with PIF-3 and 
PIF-4 were closely related to different plants in 
different groups. PIF genes are commonly divided 
into three or four groups in terms of evolution, and 
these genes are mainly related to A. thaliana and G. 
max species, according to this information. 
 

 

 
Figure 2. The phylogenetic tree of PIF genes of P. vulgaris, P. trichocarpa, O. sativa, V. vinifera, A. thaliana, 

G. max, A. hypogaea, S. lycopersicum, and Z. mays 
The phylogenetic tree was drawn with PIF proteins from nine plant species. PIF full-length amino acid sequences from P. vulgaris and 9 other plant 
species were aligned with ClustalW and the phylogenetic tree was constructed using the MEGA v11 software by the Neighbor-Joining (NJ) method 

with 1000 bootstrap. Pvul-PIF subfamilies, groups A, B, and C, are marked green, blue, and pink, respectively. 
 
 

With conserved motif analyses of Pvul-PIF 
proteins, 10 conserved motifs were discovered.  The 
length of the identified motifs was found to be 
between 15 to 50 amino acids (Figure 3). Pvul-PIF-
4.1 and Pvul-PIF-4.2 (9 motifs) were determined to 
have the most motifs, whereas Pvul-PIF-3.1 and 
Pvul-PIF-3.3 had the lowest motifs (5 motifs). The 
WEBLOGO was used to determine the conserved 
domain sequences and motif logos of PIF gene 
families from P. vulgaris species (Figure 4). 
Furthermore, based on the best possible match data, 
Pvul-PIF motifs were found to have the best match 
with motifs 1 and 10 (Table 3). 

The structural analysis of Pvul-PIF genes using 
the GSDS v2.0 database revealed intron numbers 
and exon sizes (bp). Pvul-PIF has 24 introns and 29 
exons, according to the results of the study (Figure 
5). In terms of exon numbers, Pvul-PIF-4.1 had the 
most with 8, while Pvul-PIF-4.2 had the lowest 
with 3 exons. In contrast to Wang et al. (2021) 
work, Pvul-PIF genes in the same group had varied 
intron-exon distribution patterns. They also 
discovered that PIF4 members from peanut              
(A. hypogaea L.) had 7 to 8 introns with similar 
lengths and positions. 
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Figure 3. Predicted motif distribution in Pvul-PIF genes 
 
 

Figure 4. Conserved Basic-Helix-Loop-Helix of Pvul-PIF genes domains 
 
Table 3. Estimated best-possible match information in Pvul-PIF genes 

Motif  
id Width Possible best match Contains domain 

1 50 EVHNLSERRRRDRINEKMRALQELIPNCNKTDKASMLDEAIEYLKTLQLQ PIF-3-like 
transcription factor 

2 40 QMPNQNMMCQNPILGAFNYQNQMQNPCLSEQYARYMGYHL N/A 
3 23 DQDLVELVWQNGQVVVHGQSHRR N/A 
4 15 LQIMWMGAGMWPPMF N/A 
5 26 KRKHKDIDYSEYHSEDTEEKEAVVKK N/A 
6 15 WIQYPLDDPLEQEFC N/A 
7 27 MFGFPNQIPTMHMPHAPFFPIIGNPCT N/A 
8 13 IPHYPQQMGMGMG N/A 
9 38 EGRECSVITVGSSYCGSNHIPQDQDVNWVSSNGVWTTT N/A 

10 17 MNNTIPDWDFESDTCVT PIF-3-like 
transcription factor 

 
 

 
Figure 5. Exon and intron number, length, and position in Pvul-PIF genes 
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3.3. Comparative and synteny analyses of the 
Pvul-PIF gene family 
A synteny map was created using PIF proteins 

from P. vulgaris, A. thaliana, and G. max plants.      
A relationship was found between P. vulgaris and 
A. thaliana (Figure 6), and between P. vulgaris and 
G. max (Figure 7), in the synteny analysis. Seven 
syntenic relationships were detected between            
P. vulgaris and A. thaliana PIF genes. Orthology 
was detected between the At-PIF3.2-Pvul-PIF3.2, 
At-PIF3.4-Pvul-PIF3.2,                 At-PIF3.1-Pvul-PIF3.3,  

At-PIF3.2-Pvul-PIF3.1, At-PIF3.2-Pvul-PIF3.3, 
At-PIF3.4-Pvul-PIF3.1, and At-PIF4.1-Pvul-
PIF4.2 genes. Ten syntenic relationships were 
defined between P. vulgaris and G. max PIF genes. 
Orthology was detected between Gm-PIF3.2-Pvul-
PIF3.2, Gm-PIF3.3-Pvul-PIF3.2, Gm-PIF3.1-
Pvul-PIF3.2, Gm-PIF4.3-Pvul-PIF4.1, Gm-
PIF4.4-Pvul-PIF4.1, Gm-PIF4.1-Pvul-PIF4.1, 
Gm-PIF4.2-Pvul-PIF4.1, Gm-PIF3.2-Pvul-PIF3.1, 
Gm-PIF3.3-Pvul-PIF3.1, and Gm-PIF3.1-Pvul-
PIF3.1 genes. 

 
 

         
 
Figure 6. Syntenic relationship between P. vulgaris 

and A. thaliana genes 
 Figure 7. Syntenic relationship between  

P. vulgaris and G. max genes 
 
3.4. Promotor analysis of Pvul-PIF genes 

The sequences acquired from the PIF genes 
2000 bp upstream region were investigated. The 
promoter regions of the PIF genes were discovered 
to be beneficial in plant growth, the molecular 
response to abiotic stresses, and adaptability to 
environmental conditions. The cis-acting elements 
in   the   sequences   of  the   Pvul-PIF   genes                          were  

 

determined as a result of the analyzes performed in 
the PlantCARE database and visualized with the 
TBTools software (Figure 8). It was found that the 
Pvul-PIF genes contained 65 cis-acting elements 
based on the data. The data showed that elements 
related to photosensitive elements, such as the AE-
box, G-box, I-box, and Box 4, were found in all 
Pvul-PIF  genes.  In  addition,  elements                associated  
 
 

 
Figure 8. Promotor regions of Pvul-PIF genes 

The promoter sequences (-2000 bp) of 5 Pvul-PIF genes were analyzed with the help of the PlantCARE database. The scale indicates the length of the 
upstream along with the translation codon. Different colored boxes indicate different cis-acting elements. 



281Türkiye Tarımsal Araştırmalar Dergisi - Turkish Journal of Agricultural Research       9(3): 274-285

AYGÖREN et al.

with abiotic and biotic stresses, such as MBS, ARE, 
W box, LTR, and TC-rich repeats, were identified 
in all Pvul-PIF genes. The predicted cis-acting 
elements in V. vinifera differed between species and 
genes according to Zhang et al. (2018). In this 
context, they found that light-sensitive cis-acting 
elements are the most common elements in plants 
in general. In the same study, they determined that 
there are 9 cis-acting elements in the VvPIF gene. 

 
3.5. 3D homology modeling of Pvul-PIF genes 

and protein-protein interactions 
BLASTP was used to scan PIF proteins from the 

Protein Data Bank (PDB), and the 3D homology 
modeling of these proteins was visualized in the 
Phyre2 database, which is used to collect 
information about the structure and functions of PIF 
proteins. The 3D homology patterns of the PIF 
proteins identified in this research were shown in 
Figure 9. As a result of the data obtained from the 
STRING database, the protein-protein interactions 
of the identified PIF proteins were visualized in 
Figure 10 using the Cytoscape tool. 

 

 
Figure 9. 3D structure modeling of Pvul-PIF proteins 

 

 
Figure 10. Protein-protein interactions (PPI) of the 

identified PIF proteins 

3.6. In silico expression analysis of Pvul-PIF 
genes in stress conditions 
For in silico expression analysis of the common 

bean PIF genes for salt and drought stress, NCBI 
SRA database (Sequences Read Archive) RNAseq 
data from SRR957668 (salt stress treated leaf), 
SRR958469 (leaf salt control), SRR8284481 
(drought stress treated leaf), and SRR8284480 (leaf 
drought control) were used. The expression levels 
of the Pvul-PIF genes under salt and drought 
stresses were visualized in Figure 11 according to 
the heatmap generated by the log2 transformation 
of the RPKM values based on the results obtained 
from the RNAseq data. In this context, Pvul-PIF-
3.3, Pvul-PIF-4.1, and Pvul-PIF-4.2 were the genes 
in which expression levels increased in response to 
salt stress. On the other hand, Pvul-PIF-3.1 was the 
gene of which expression levels decreased in 
response to drought stress. 

 

 
Figure 11. Heat map of differentially expressed Pvul-
PIF genes in leaf tissue under salt and drought stress  

C: Control, T: Treatment, S: Salt, D: Drought. The expression levels 
were represented according to the color bar 

 
In a study conducted on B. napus, Li et al. 

(2021) found that three BnaPIF4 genes 
(BnaC03g23970D, BnaA03g19970D, and 
BnaC04g48630D) were expressed at higher levels 
in the outer parts of the flower than in other organs 
and tissues. They also reported that two BnaPIF5 
(BnaC08g29580D and BnaA09g37540D) and three 
BnaPIF2 (BnaC04g52060D, BnaA03g21570D, and 
BnaA05g00920D) genes were predominantly 
expressed in leaves and stems. 

 
4. Conclusions 
The common bean is a major leguminous crop used 
to supply significant nutritional requirements and a 
source of protein. There is a growing demand for 
the creation of economically important high 
yielding and adaptable to changing environmental 
circumstances types. It is vital to understand plant 
growth, as well as their reactions to salt and drought 
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stress produced by global warming, to enhance 
agricultural output. 

This study provided a thorough examination of 
the PIF gene family in common beans (P. vulgaris 
L.). We identified 5 PIF genes in the P. vulgaris 
genome. These members were spread across four 
separate chromosomes. The gene structure, motif, 
and Ka/Ks findings suggest that the majority of 
Pvul-PIF were substantially conserved. According 
to evolutionary and synteny analysis, the majority 
of the genes exhibited a one-to-one homologous 
relationship between the A. thaliana and G. max 
genomes. At the time of segmental duplication and 
purifying selection, PIFs may have aided common 
bean species' growth and development. 

This study focused on the PIF gene family, 
which is regulated by phytochromes and is 
necessary for plant photomorphogenesis. 
Furthermore, the salt and drought stress responses 
of determined gene family members were studied. 
We believe that this study, which was conducted for 
the first time on P. vulgaris species, will be a 
valuable resource for scientists conducting research 
in the fields of agricultural biotechnology, plant 
biotechnology, and molecular biology. 
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