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ABSTRACT 

Aim: This study aimed to uncover the varieties in protein profiles of Met in breast tumor (BT) cells by 

assessment of in vitro and in silico analysis.  

Materials and Methods: Here, the cells obtained from mastectomy patients were cultured, the 
effective Met-dose was determined as 25 mM through cell viability and BrdU tests. Protein 
identification in the breast tumor cells was implemented by employing LC-MS/MS technology.  

Results: The expression of SSR3, THAP3, FTH1, NEFM, ANP32A, ANP32B, KRT7 proteins was 
significantly decreased whereas the GARS protein increased in the 25 mM Met group compared to the 
Non-Met (0 mM) control group. In silico analysis, we analyzed the probable interactions of all these 
proteins with each other and other proteins, to evaluate the analysis of the larger protein network, and 
which metabolic pathway proteins are involved in. 

Conclusion: The stated proteomics analysis in our study proposes a better understanding of the 
prognosis of breast cancer and future studies to investigate the effect of metformin in this field on 
proteomic pathways in other sorts of cancer. 
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ÖZ 

Amaç: Bu çalışmada, meme tümörü (BT) hücrelerinde Met'in protein profillerindeki çeşitlerin in vitro ve 
in siliko analizleri değerlendirilerek ortaya çıkarılması amaçlanmıştır. 

Gereç ve Yöntem: Burada mastektomi hastalarından elde edilen hücreler kültürlendi, hücre canlılığı 
ve BrdU testleri ile etkin Met-doz 25 mM olarak belirlendi. Göğüs tümörü hücrelerinde protein 
tanımlaması, LC-MS/MS teknolojisi kullanılarak gerçekleştirilmiştir.  

Bulgular: Proteomik analiz sonuçlarına göre, Non-Met (0 mM) kontrol grubuna kıyasla 25 mM Met 
grubunda SSR3, THAP3, FTH1, NEFM, ANP32A, ANP32B, KRT7 proteinlerinin ekspresyonu önemli 
ölçüde azalırken GARS proteininin ekpresyonu arttı. Silico analizde tüm bu proteinlerin birbirleriyle ve 
diğer proteinlerle olası etkileşimlerini analiz ederek daha büyük protein ağının analizini ve hangi 
metabolik yolak proteinlerinin rol oynadığını değerlendirdik.  

Sonuç: Çalışmamızda belirtilen proteomik analizler, meme kanserinin prognozunun daha iyi 
anlaşılmasını ve metforminin diğer kanser türlerinde proteomik yolaklar üzerindeki etkisini araştırmak 
için gelecekteki çalışmaları önermektedir. 

Anahtar Sözcükler: Meme tümör hücresi, kütle spektrometrisi, metformin, ağ analizi, protein ağları. 
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INTRODUCTION  

Breast cancer is the most commonly diagnosed 

cancer following lung cancer with a rate of 11.6% 

among women and is categorized as the leading 

cause of cancer death globally with 2,088,849 

new cases and 626,679 deaths in 185 countries 

(1). Despite having several therapy protocols, the 

patients are prone to greater risk of recurrence or 

secondary disease development during the 

progression of the disease due to the 

multifactorial nature of the disease, thus, an early 

diagnosis of the disease and avoidance of risk 

factors are the main strategies for preventing 

breast cancer (2). Hormonal therapy, mastectomy, 

and radiation, and chemotherapy are the most 

widely preferred therapy strategies to improve the 

survival of breast cancer patients (3).  

Metformin (Met), one of the oral antidiabetics 

biguanides known to lower the risk of breast 

cancer, has an advantage in diabetic breast 

cancer patients if periodically used, compared to 

the MET-free diabetes treatments (4). Although 

several studies have underlined the association 

between diabetes and the increased risk of 

breast cancer, epidemiologic studies suggest that 

Met elevates the incidence of cancer-related 

survival in patients with type 2 diabetes. Libby et 

al. (5) in 2009 and Currie et al. (6) in 2012, two 

independent research groups, reported that the 

patients having both diabetes and cancer, had 

higher survival rates if treated with MET 

compared to other antidiabetic drugs.  

The potential anti-cancer and anti-tumoral effects 

of Met on breast cancer have been discussed in 

several studies. Met has been reported to inhibit 

lipogenesis (7) and hyperinsulinemia, which have 

pivotal roles in the development of numerous 

types of cancer, including breast and prostate 

cancers (8). There is also some evidence 

suggesting that Met could induce apoptosis in 

many cancer cell lines, such as endometrial and 

triple-negative breast cancers (TNBC) (9).  

To better understand the mechanisms of Met in 

molecular cancer studies, the effect of Met on 

breast cancer is examined under two headings: 

AMPK-independent and AMPK-dependent (10). 

Met activates the p53 through the AMPK-
dependent pathway, thus, prevents cell growth 
and induces apoptosis (11). Moreover, it co-
activates p53 and BAX (Bcl-2-associated X) 
proteins, triggering apoptosis via the ERK 
signaling pathway in MCF-7 cells (12). In the 
other approach, namely the AMPK-independent 

mechanism, Met suppresses inflammation by 
hindering several mediators including COX-2, 
TNF-alfa, IL-6, IL-17, NF-kB (10). IL-6 was 
reported to take part in the growth and invasion 
of breast cancer through STAT3 and JAK 
pathways (13). Interestingly enough, Met has 
been shown to inhibit the pro-inflammatory 
mediators such as IL-17 and IL-6, blocking the 
activation of NF-kB, thus reducing tumor 
development (14), and similarly, the inflammatory 
response associated with the suppression of NF-
kB activation in breast cancer cells. Recently, we 
reported that Met reduces the expression of 
MMP-2 and MMP-9 by blocking-translocating NF-
kB from the cytosol to the nucleus and showing 
the anti-proliferative effect in MCF-7 cancer cells 
(15), and Met induces cell cycle arrest in primary 
breast cancer cells through upregulation of P53 
whereas downregulation of cyclin D1 in an 
AMPK-independent pathway (16). 

Exploring protein-protein interaction networks 
unveils and gives a solution to understand the 
molecular mechanisms and systems biology (17). 
The proteomics approaches based on mass 
spectrometry take a significant part in the 
visualization of these network studies through 
statistical quantification using bioinformatics 
tools, and elucidating drug pharmacokinetics, and 
identifying protein targets. The protein profile 
investigation is critical in revealing the function 
and interaction of proteins through the discovery 
of nascent proteins, drug development, and 
comparison with the previously identified 
information in databases to help recognize new 
target proteins.  

In this paper, we explored the effect of Met on 
protein expression profiles in breast tumor cells 
using LC-MS/MS technology and provided the 
outcomes visually understandable by using the 
current proteomic databases and algorithms as 
shown workflow in Figure-1. Our results have 
offered a proteomic variability of Met, which also 
demonstrates therapeutic mechanisms and target 
proteins when applied to breast tumor cells and 
normal breast cells. 

MATERIALS and METHODS 

Experimental Medication and Dose 
Measurements 

Me  o min  1 1-Dime   l i  ani e     o  lo i e  
Mole  la   ei      165.62 g/mol, H10000691.  
100 mM metformin was prepared using 50 mL 
DMEM/F-12. The stock solution was stored at 
4°C. Experimental doses (5, 10, 25 mM) were 
diluted from the prepared stock solution and 
measured in 24-well plates. 
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Figure-1. The study was composed of two main parts 

as in vitro and in silico analysis. 

 

Primer culture conditions  

We acquired breast cancer cells from five human 
donors (aged 45–55) that underwent biopsies of 
breast tumors in the the Department of General 
Surgery of Cerrahpasa Faculty of medicine in  
Istanbul University. The acceptance criteria were 
being in the post-menopausal period and having 
breast cancer with estrogen and progesterone 
positivity but HER2 negativity. The patients with 
coexisting other cancers, any chronic diseases, 
or having any of the BRCA1 and BRCA2 gene 
mutations were discarded from the study. The 
protocol was approved by the Ethics Committee 
of Clinical Research Center of Cerrahpasa 
Faculty of medicine in  Istanbul University, 
No:83045809- 604.01.02-257, 133). All of the 
experimental procedures were performed 
according to the Declaration of Helsinki. Informed 
consent was taken from all individual participants 
included in the study. 

Breast tissues were cut in small slices, placed in 
cell culture flasks pre-coated with fetal calf 
serum, and incubated for 2 weeks in DMEM/F12 
medium (Wisent Bioproducts, Quebec, Canada) 
supplemented with 10% fetal bovine serum 
(Wisent Bioproducts, Quebec, Canada), 100 
U/mL penicillin (Wisent Bioproducts, Quebec, 

Canada), and 100 𝜇g/mL streptomycin (Wisent 
Biop o    s  Q e e   Cana a  a  37°C in 95% 
humidified air with 5% CO2. As the formation of 

monolayers of primary cancer was observed in 
flasks, cells were subcultured every 7th-day 
using trypsin. The number of cells from the 3th-
8th passages was calculated as 300 000 cells/ml. 

 

Determining the effective dose by cell viability 
and proliferation test 

Proteomics Analysis 

Sample preparation and protein extraction 
and for LC-MS/MS analysis 

Cells planted for the protein analysis study were 
in   a e   o  24   a  37°C by adding two doses 
of Met (0 mM and 25 mM). The dose optimization 
of Met was determined in our previous reports 
(16,18). At the end of 24 h, the medium on the 
cells was discarded, the cells were washed twice 
with PBS, trypsinized, re-washed 2 times with 
cold PBS, and the cell pellets were eventually 
transferred to + 4°C  o  e used within the study. 
For protein extraction, the cell pellet was mixed 
with the Universal Protein Extraction (UPX) Kit 
(Expedeon-44101) and the protease inhibitor 
cocktail (Thermo Sci.-87785). The samples were 
sonicated for 5x10 sec cycles and a 30-sec 
pause between these cycles. After sonication, the 
samples were kept on ice and cooled, and then 
boiled at 95 °C  o  10 min    o    s i  in  a  1000 
rpm. The samples were then centrifuged at 
14,000 rpm for 10 min. The supernatants were 
discarded and the pellets were transferred to the 
new tubes. Peptide recovery was performed 
using FASP Protein Digestion Kit (Expedeon-
44250) and the trypsin enzyme (Pierce-90057). 
Samples were then diluted with 0.1% formic acid 
so that the final concentra ion  as 200 n  / µL. 
The samples were in turn transferred to the 
device-specific tubes. 

LC-MS/MS analysis and data processing  

Before the analysis, detector and calibration 
settings were conducted through the MassLynx 
program (V4.1-Waters), which is specific to the 
Xevo G2-XS Q-TOF (Waters) device on which 
the analysis was performed. The method was 
switched to SONAR and sensitivity mode and the 
tryptic peptides formed were fractionated with 
acetonitrile gradient on the HSS T3 column 
(Waters-186008818) according to their 
hydrophobicity. By increasing acetonitrile in the 
range of 5%-35%, the peptides were separated 
from the column and the result of electrospray 
ionization was analyzed in mass spectrometry. 
During the analysis, data were collected for 
peptides that could be identified in the m/z 50–
1950. The amino acid sequence was gathered by 
implementing the MS and MS/MS functions over 
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0.7s periods. 100 fmol/ul Glu-1-fibrinopeptide B 
was operated as the lock mass calibrate. 

Statistical analysis 

Human protein sequence information in the 
UniProt protein database was used for protein 
identification. Statistical analysis was performed 
using Progenesis QI-P software (Waters-2018). 
The relative expressional rate of proteins was 
filtered by ANOVA p-val e ≤ 0.05 and protein 
expression variation with statistical significance 
was evaluated as minimum fold change >2 in t-
test statistical analysis. Glu-1-fibrinopeptide B 
peptide with m/z 785.8426 was set as a celebrant 
and normalization of the samples were 
conducted based on the total ion intensity. The 
power scores, which are calculated using 
Progenesis QI-P internal parameters, above 0.5 
(50%) were admitted as a filter for multiple 
comparisons. For identified 8 proteins, please 
(see Table-1). 

Bioinformatics Analysis 

Databases and Preprocessing steps 

A list of proteins was generated from the Uniprot 
database (19) following the statistical evaluation 
of mass spectrometry results (Table-2). These 
proteins were subjected to Human Integrated 
Protein-Protein Interaction rEference (HIPPIE) to 
enrich and detect a potential protein network. The 
interaction type of Association, Physical, and 
Direct, and Colocalization, tissue as Breast - 
Mammary Tissue are filtered, and confidence 
level was set up to medium (0.63). HIPPIE (20) is 
a very useful tool as it combines many 
experimentally approved databases including 
BIOGRID (21), MINT (22), and IntAct (23) 
databases. 

Over-representation Analysis 

We subjected the official gene names of the 

protein list from the HIPPIE into the WebGestalt 

(24) (WEB-based Gene Set Analysis Toolkit). As 

well known, the WebGestalt server is a common 

tool for the functional enrichment analysis of 

gene lists. We implemented an approach through 

geneontology and pathway analysis methods 

such as KEGG (25), Wikipathway (26), and 

Panther (27) which is namely the Over 

Representation Analysis (ORA) (28) to analyze 

the gene list in the WebGestalt. Illumina 

humanwg 6 v3 was selected as the Reference 

set, and all other advanced parameters were left 

at their default. Besides, GeneMANIA (29) was 

used to expand the gene list with functionally 

similar genes of the proteomics data. 

String Database and Visualization on 

Cytoscape 

We used the StringApp program (30), one of the 

most prominent data sources of networks being a 

Cytoscape application for both visualization and 

the analysis of protein networks on Cytoscape 

(31). Then, another Cytoscape application-the 

clusterMaker2 (32), that implements numerous 

clustering algorithms were used (clusterMaker2 

version 1.3.1) to implement Markov clustering 

(MCL) (33), thus, to evaluate the protein network 

and determine the largest cluster. To run MCL on 

Cytoscape, the inflation value was set to 2.3, the 

array sources were adjusted to use the STRING 

confidence score, and MCL advance settings 

were left at their default. The STRING: Disease 

query tool was run to compare our result of 

protein network and output protein network of 

invasive ductal carcinoma. The STRING Disease 

query was set to the maximum of 240 proteins 

and a cut-off value of 0.50. Similarly, the 

confidence (score) cut-off value and maximum 

additional interactions were set to 0.50 and 0, 

respectively.  

 

Table-1. Significantly changed protein description list. 

Accession 
Unique 
peptides 

Anova (p) 
Max fold 
change 

Description 

P41250 2 0.02256881 5.675406671 (GARS) Glycine tRNA ligase 

Q9UNL2 1 0.03119226 15.91006341 
(SSRG) Translocon-associated protein 
subunit gamma 

Q8WTV1 1 0.03321887 9.442900878 (THAP3) THAP domain-containing protein 3 

P02794 1 0.03579029 5.501142287 (FRIH) Ferritin heavy chain 

P07197 4 0.04782681 41.2040797 (NFM )Neurofilament medium polypeptide  

P39687;Q92688 3 0.04916017 15.86841797 
(AN32A) Acidic leucine-rich nuclear 
phosphoprotein 32 family member A  

P08729 10 0.04952918 6.640075817 (K2C7) Keratin type II cytoskeletal 7 



 
 

Volume 61 Issue 2, June 2022 / Cilt 61 Sayı 2, Haziran 2022 219 

Table-2. The list of the proteins retrieved information from the Uniprot database. 

Swiss-Prot 
Accession 
Number 

Official 
gene 
names 

Function 
Sub-cellular 
localization 

Pathology 
Post-
translasyonel 
modification 

Structure 

P41250 GARS 

Catalyzes the ATP-
dependent ligation of glycine 
to the 3'-end of its like tRNA 
through the creation of a 
Gly-AMP 

Cytoplasm, 
axon 

Neurodegeneration, 
Neuropathy, Charcot-
Marie-Tooth 

Acetylation, 
Phosphorylation 

X-ray, 
PDB:2PME 

Q9UNL2 SSR3 

Regulation of the retention 
of ER-localized proteins by 
binding Calcium to the ER 
membrane 

Endoplasmic 
reticulum 
membrane 

Mutations involved in 
many sorts of cancer 

Phosphorylation, 
Acetylation 

None 

Q8WTV1 THAP3 

To regulate the 
transcriptional activity of 
RRM is needs to be a part of 
a THAP1/THAP3-HCFC1-
OGT complex. 

Nuclear 
chromatin 

Mutations associated 
with many types of 
cancer 

Phosphorylation 

The 
experimental 
structure is 
unavailable 

P02794 FTH1 

Possesses ferroxidase 
activity, takes a part in the 
delivery of iron to cells as 
well, and is essential for iron 
homeostasis. 

Cytosol, 
Lysosome, 
Nucleus 

Hemochromatosis type 
5, and mutations in 
many cancer types 

Acetylation 
X-ray, 

PDB:1FHA 

P07197 NEFM 

It is a neurofilament 
containing three 
intermediate filament 
proteins. 

Cytoskeleton 
Mutations associated 
with many types of 
cancer 

Acetylation, 
Methylation 

The 
experimental 
structure is 
unavailable 

P39687 ANP32A 

Involved in several cellular 
processions, repression of 
transformation, inhibition of 
phosphatase 2A, regulation 
of mRNA and takes a part in 
the suppression of E4F1-
mediated transcriptional.  

Cytoplasm, 
Endoplasmic 
reticulum, 
Nucleus 

Mutations associated 
with many sorts of 
cancer 

Phosphorylation 
X-ray, 
PDB:2JE0 

Q92688 ANP32B 

Working as a cell cycle 
factor in G1 to S phase and 
cell survival factor, a 
caspase-3 inhibitor as anti-
apoptotic protein.  

Nucleus 
Mutations linked to 
many sorts of cancer 

Acetylation 
NMR, 
PDB:2ELL 

P08729 KRT7 

Involved in blocking 
interferon-linked interphase 
and stimulating DNA 
synthesis. 

Cytoplasm, 
Nucleus 

Mutations linked to 
many types of cancer 

Dimethylation, 
Acetylation 

X-ray, 
PDB:4XIF 

 

RESULTS  

Our approaches in bioinformatics analysis are 
briefly presented in Figure-1. We expanded the 
protein list through statistically significant MS 
protein results, and 241 nodes and 270 edges 
with experimentally validated for functional 
enrichment analysis using the HIPPIE 
bioinformatics tool. Figure-2 represents the 
interaction through the source to the target 
protein. According to Figure-2, ANP32A, FTH1, 
THAP3, KRT7, ANP32B, NEFM, and SSR3 
proteins were upregulated whereas GARS 
protein was downregulated under 25 mM Met-
dose compared to Met-free breast tumor cells 
(see Figure-2).  

We used MCL clustering to make the protein 
network easier to understand. In the largest 
cluster, String Functional analysis was acquired 
by Markov clustering. After performing clustering, 
we solely focused on determining whether there 
is interaction with the largest and small clusters 
of our downregulated proteins and GARS in 
Figure-3. 

 
Figure-2. Enriched protein profiles in breast tumor 

cells with 25mM Met-dose compared to 
Met-free breast tumor cells. Only GARS 
protein (green node) was observed to be 
up-regulated, whereas the other red nodes 
show the down-regulated proteins (p<0,05). 

 

Among the down-regulated proteins, ANP32A 

and THAP3 are in the largest cluster, while other 

proteins are in small clusters and indicated in 

larger font sizes (see Figure-3). 
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Figure-3. A. The visualization of the protein network 

related to breast cancer cells using Markov  
(MCL) in Cytoscape. 

B. The largest Cluster in the Network.                                      
C. The small clusters in the Network after 
performing the MCL. The names of proteins 
from the MS output are represented in larger 
font sizes (GARS, SSR3, THAP3, FTH1, 
NEFM, ANP32A, ANP32B, KRT7). 

 

 
Figure-4. Functional enrichment analysis of the small and 

largest clusters acquired by using MCL 
clustering. A. KEGG pathway, B. Gene Ontology 
(GO Function, GO Process). FDR values are 
ranked significantly. The results were filtered by 
a redundancy cut-off value of 0.05 in the 
STRING enrichment table. 

 

 
Figure-5. The WebGestalt result of GARS protein and the 

down-regulated proteins and their relationships 
with the pathways(KEGG, Wikipathway, 
Panther) in breast tumor cell at 25 mM Met-
 ose  FDR≤0.05 . 

 
Figure-6. Each Biological Process, Cellular Component, 

and Molecular Function category is 
represented by a red, blue, and green bar, 
respectively. The height of the bar represents 
the number of IDs in the user list and the 
category. 

 

 
Figure-7. The WebGestalt result of GARS protein and the 

down-regulated proteins and their relationships 
with the Geneontology (Biological process and 
Molecular Function) in breast tumor cell at 25 
mM Met- ose  FDR≤0.05 . 

 

We detected that functional enrichment analysis 

of Geneontology and Pathway from STRING and 

WebGestalt are the same description in the string 

enrichment table in Figure-4 and bar graphs in 

Figure-5 and Figure-7. Furthermore, we retrieved 

100 proteins in the network associated with 

invasive ductal carcinoma by importing them from 

the STRING: disease database. Then, we 

identified both networks of enrichment protein in 

string query (240 nodes) and the disease network 

(240 nodes) in STRING by using the Merge 

Networks tool in Cytoscape. As a result of the 

network (not shown here), 6 proteins (ESR1, 

KRT7, TP53, JUN, KRAS, MAPK8) were found to 

be associated with the Disease network. As a last 

one, we summarized bar graphs in Figure-6 from 

our results as Geneontology categories in 

WebGestalt. 
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ESR1 and JUN have four edges (interaction) by 
GARS, ANP32B, ANP32A, and SSR3 proteins, 
whereas  KRT7 has three edges by CYLD, ATF2, 
KDM1A; and THAP protein has three edges by 
APP, OGT, and LTBR. All of these proteins 
(ESR1, JUN, KRT7, CYLD, ATF2, KDM1A, APP, 
OGT, LTBR) are known to have roles in 
programmed cell death (see Figure-7). Besides, 
a total of 62 nodes from the network is related to 
programmed cell death (p-value: 1.1314e-10 in 
Figure-7). TRIM25 has two edges by SSR3 and 
THAP domain-containing 3 (THAP3), and is 
related to NF-kappa B signaling pathway. 10 
nodes are involved in NF-kappa B signaling 
pathway (p-value: 0.000010805 in Figure-5). No 
interaction of NEFM was determined in the 
enriched proteomic profile of the Breast tumor 
cells although in vitro analysis NEFM was 
observed to be down-regulated in Met treated 
breast cancer group. Moreover, it takes part in 
Association Between Physico-Chemical Features 
and Toxicity Associated Pathways via 
Wikipathway database by nodes of ACTR2, 
ACTR3, AXIN1, FN1, GRB2, JUN, MAPK, 
PPP2CA in Figure-5 (p-value: 0.0000041950). 

In the pathway analysis, we found mitophagy-
associated proteins such as CSNK2A1, 
CSNK2B, GABARAPL2, JUNE, MAPK8, MAPK9, 
OPTN, TP53, and KRAS (GTPase KRas)  nodes 
through KEGG (Figure-5) (p-value: 0.000003). 
According to the in vitro outcomes, down-
regulated FTH1, and upregulated protein GARS 
had the most interactor nodes with these 
mitophagy-associated proteins. As summarized 
in Table-2, ANP32A is involved in several 
processes in the cell in addition to interacting 
physically with KRAS. 

 
Figure-8. The functional enrichment (physical 

interaction, co-expression, shared protein 
domains) analysis in GeneMANIA. Yellow 
nodes in the network are the gene lists.  

Moreover, as shown in Figure-8, the interaction 

of NEFM and KRT7 shared protein domains from 

PFAM. Figure 8 represents the expanded gene 

list with functionally similar genes of the 

proteomics data obtained using GeneMANIA 

(29). GARS and ANP32B proteins and KRT7 and 

NEFM proteins have direct interactions with each 

other. Similarly, ANP32A and ANP32B have not 

only a direct interaction but also shared protein 

domains. While SSR3 has no interactions or 

shared domains with these proteins, THAP3 is 

shown to have interactions with THAP family 

proteins but no other type of proteins (Figure-8). 

DISCUSSION 

The widespread use of metformin worldwide and 

its efficiency on individuals need to be 

extensively figured out. Met has been accepted 

to have a relative safety profile compared to other 

antidiabetic drugs (6). Met possesses its cell 

growth inhibition ability through triggering 

apoptosis in cancer cells such as glioma and 

triple-negative breast cancer cells (34, 35). 

However, the full mechanism by which Met is 

beneficial to cancer treatment is not thoroughly 

understood yet. In this study, we employed 

primary breast cancer cell culture and protein 

extracts for proteomics processes to elucidate 

previously unreleased results behind me  o min’s 

beneficial effect on invasive ductal carcinoma 

treatment and protein-targeted studies in future 

studies. 

Protein network theory is a pivotal method of 

choice to figure out the protein interaction and 

function, subcellular components in the cell to 

analyze the proteomics data. THAP3 is a subunit 

of a THAP1/THAP3-HCFC1-OGT complex that 

regulates the transcriptional activity of RRM1 

which was approved to be a drug target in human 

protein atlas by the FDA (36).   

Concerning the in vitro results, FTH1 and GARS 

proteins have the most interactor nodes with 

mitophagy-associated proteins. Mitophagy is 

specific autophagy, targeted for the degradation 

of mitochondria (37). Surprisingly, it is thought to 

play two roles in carcinogenesis depending on 

the tumor type and stage (38). In general, 

mitophagy targets to remove malfunctioning 

mitochondria to cope with oxidative stress and 

block carcinogenesis. Nevertheless, it can 

preserve cells from cell death and support the 

survival of tumor cells under unfavorable 

conditions such as insufficient nutrients or 

hypoxia (38). That is, as the level of mitophagy in 
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a cancer cell increases, the ROS ratio decreases 

and it becomes resistant to treatment with 

healthy mitochondria. During anti-cancer 

treatment, therefore, the decrease in the level of 

mitophagy makes it more sensitive to the 

treatment in the cancer cell. Thus, mitophagy 

appears to be a featured quality control factor in 

target-based prevention of cancer (39).  

Down-regulated ANP32A protein, for example, is 

known to be part of various processes including 

physical interaction with the KRAS gene. KRAS 

considering the main target in anticancer drug 

discovery (40), takes a significant part in the 

regulation of cell proliferation and oncogenic 

events (41).  

NEFM (Neurofilament medium polypeptide) is 

mostly a cytoplasmic protein expressed in CNS 

and peripheral nerves. Interestingly enough, 

although NEFM is known to be expressed in 

brain cells, it has the most value in fold change 

compared to the control (Met-free) group in our 

statistical conclusion. Tyanova et al. similarly 

reported high NEFM expression levels in Breast 

cancer proteomic data in Expression Atlas (42).  

We need to determine the interactions of 

expressed proteins with each other to understand 

cellular function, thus, the system biology. The 

STRING database integrates known and 

predicted protein-protein interactions physically 

and functionally, collecting proteomics data from 

the public and visualizing them by scoring. 

STRING utilizes famous categorizing systems 

including Gene Ontology and KEGG for 

enrichment analysis (43).  

CONCLUSION 

The molecular characterization of breast cancer 

has become revolutionary for therapeutic 

approaches. The fact that breast cancer has a 

multifactorial feature requires RNA and DNA 

analysis with its microarray and sequencing 

techniques almost constantly in molecular size. 

The obvious advances in proteomic technologies 

have made substantial progress compared to the 

past and have now increased the profiling of 

clinical specimens and their accuracy in 

identification and quantification. Molecular 

characterization, such as proteomic profiling, will 

be of great importance for breast cancer person-

oriented treatment, as it is target-oriented in 

developing existing therapy options. Although the 

mRNA profile is predominant in this 

characterization, analysis of high-tech proteome 

MS data provides a versatile approach to the 

protein profile of the disease, the classification of 

subtypes, application of protein-targeted 

therapies under system biology, and the effective 

treatment of the findings. 

Here, we analyzed the change of metformin, 

which is relatively safe and effective compared to 

chemotropic agents, economically appropriate, to 

the protein profile in breast tumor cells. Our 

analysis supports the fact that metformin 

possesses anti-cancer features with changes in 

proteomic pathways on breast cancer. With the 

study findings we designed, metformin may 

contribute to its potential therapeutic effect in 

breast cancer treatment. However, metformin as 

a cancer-targeted agent and its mechanism of 

action in proteomic pathways requires further 

supportive investigations to be fully understood.  
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