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ABSTRACT 

We discuss the asymptotic stability of autonomous nonlinear fractional order systems, in which the state equations 

contain integer derivative and fractional order. We use the Lyapunov's second method to derive some sufficient 

conditions to ensure asymptotic stability of nonlinear fractional order differential equations. We also give two 

examples in order to consolidate the obtained results. 
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Lyapunov Fonksiyonları ile Fraksiyonel Diferansiyel Denklemlerin Kararlılığı 

 
ÖZ 

Bu çalışmada, fraksiyonel ve tamsayı mertebe içeren lineer olmayan otonom diferansiyel denklem sistemlerinin 

asimptotik kararlılığı araştırıldı. Lineer olmayan otonom fraksiyonel sistemlerin asimptotik kararlılığını göstermek 

için bazı yeterli şartlar elde edilerek Lyapunov’un ikinci metodu kullanıldı. Ayrıca elde edilen sonuçları pekiştirmek 

için iki örnek verildi. 

Anahtar Kelimeler: Asimptotik Kararlılık, Fraksiyonel Diferansiyel Denklemler, Lyapunov Fonksiyonları,  

 

INTRODUCTION  

Fractional calculus is known as the generalization of the 

traditional integer-order calculus. It has attracted the 

attention of many authors due to its increasing 

application fields in recent years in many areas of 

science and engineering [1-5]. Studies on fractional 

derivatives and fractional integrals have been 

particularly conducted via fractional calculus. Thus, 

widely accepted calculations and interesting results have 

been obtained [6-20]. We studied the stability of the 

solutions of these equations by establishing differential 

equation models from a new fractional-order motivated 

by these studies considering the Lyapunov's Second 

Method, to determine the stability behavior of solutions 

of certain nonlinear fractional differential equations. 

The major advantage of this method is that stability can 

be obtained without any prior knowledge of solutions. 

Although A. M. Lyapunov, who introduced this method 

in 1892, used it only to establish simple stability 

theorems, his basic ideas have been extensively 

exploited and effectively applied to entirely new 

problems in physics and engineering for 40 years [8]. 

In this paper, we consider the nonlinear fractional 

differential equatios 

 

𝑥′+0𝐷𝑡
𝛼𝑥(𝑡) = 𝑓(𝑥(𝑡)),   𝑡 ≥  0    (1) 

𝑥′′(𝑡) + 𝑔(𝑥′(𝑡))+0𝐷𝑡
α𝑥′(𝑡) = 𝑓(𝑥(𝑡)),  𝑡 ≥ 0  (2) 

 

where 0 < α < 1,  0𝐷𝑡
α𝑥(𝑡) denotes Caputo's fractional 

derivative with the lower limit 0  for the function 𝑥(𝑡), 

𝑓, 𝑔 ∈ 𝐶1(Ω), with 𝑓(0) = 𝑔(0) = 0, Ω ⊂ 𝑅 is a 

domain that contains the origin 𝑥 = 0. 

Definition 1.1. ([2]).  Given an interval [𝑎, 𝑏] of 𝑅, the 

fractional order integral of a function 𝑓 ∈ 𝐿1([𝑎, 𝑏], 𝑅) 

of order α ∈ 𝑅+ is defined by 

 

 𝑎𝐼𝑡
α𝑓(𝑡) =

1

Γ(α)
∫ (𝑡 − 𝑠)α−1𝑡

𝑎
𝑓(𝑠)𝑑𝑠,   

                           𝑡 ∈ [𝑎, 𝑏],  α > 0   (3) 

 

where Γ is the Gamma function. 

 

Definition 1.2. ([2]).  Suppose that a function 𝑓  is 

defined on the interval [𝑎, 𝑏]. Caputo's fractional 

derivative of order α with lower limit 𝑎 for 𝑓  is defined 

as 

 

 𝑎𝐷𝑡
α𝑓(𝑡) =

1

Γ(𝑛−α)
∫ (𝑡 − 𝑠)𝑛−α−1𝑡

𝑎
𝑓(𝑛)(𝑠)𝑑𝑠  

                = 𝐼𝑡
𝑛−α𝑓(𝑛)(𝑡),  𝑡 ∈ [𝑎, 𝑏]   (4) 

 

where 0 < 𝑛 − 1 < α ≤ 𝑛. 

Particularly, when 0 < α ≤ 1, it holds 

 

 𝑎𝐷𝑡
α𝑓(𝑡) =

1

Γ(1−α)
∫ (𝑡 − 𝑠)−α𝑡

𝑎
𝑓̇(𝑠)𝑑𝑠  

                = 𝑎𝐼𝑡
1−α𝑓̇(𝑡),  𝑡 ∈ [𝑎, 𝑏]   (5) 

 

Lemma 1.1. ([2]).  Let 0 < α < 1,  𝑝 ≥ α and 𝑓(𝑡) be 

continuous on [𝑎, +∞).Then it holds 

 

 𝑎𝐷𝑝( 𝑎𝐼𝑡
α𝑓(𝑡)) =𝑎 𝐷𝑡

𝑝−α
𝑓(𝑡).   (6) 

 

Lemma 1.2. ([19]).  Let 0 < α < 1 and 𝑓(𝑡) ≥ 0 on 
[𝑎, 𝑏]. Then it holds 
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 𝑎𝐼𝑡
α𝑓(𝑡) ≥ 0,  𝑡 ∈ [𝑎, 𝑏].   (7) 

We quote a result of existence and uniqueness of the 

global solution for the nonlinear fractional dynamical 

system 

 

{
 𝑎𝐷𝑡

α𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))

𝑥(0) = 𝑥0

    (8) 

 

which is a precondition in the development of this 

paper. 

 

Lemma 1.3. ([19]).  Consider the system (8). Suppose 

0 < α < 1, Ω ⊂ 𝑅 is a domain that contains the origin 

𝑥 = 0, 𝑥0 ∈ Ω. Suppose further 𝑓(𝑡, 𝑥): [0, +∞) × Ω →
𝑅 is continuous and satisfies a Lipschitz condition in 𝑥  
with a Lipschitz constant 𝐿 > 0. Then there exists a 

unique function 𝑥(𝑡) ∈ 𝐶[0, +∞) satisfying the system 

(8). 

 

Lemma 1.4. ([18]).  Let 𝑥(𝑡) ∈ 𝑅 be a continuous and 

derivable function. Then, for any time instant 𝑡 ≥ 𝑡0 

 
1

2
 𝑡0

𝐷𝑡
α𝑥2(𝑡) ≤ 𝑥(𝑡)𝑡0

𝐷𝑡
α𝑥(𝑡),  ∀α ∈ (0,1). (9) 

 

Proof. Proving that expression (9) is true, is equivalent 

to prove that 

 

𝑥(𝑡)𝑡0
𝐷𝑡

α𝑥(𝑡) −
1

2
 𝑡0

𝐷𝑡
α𝑥2(𝑡) ≥ 0,  ∀α ∈ (0,1)       

(10) 

 

Using Definition 1.2. it can be written that 

 

 𝑡0
𝑐 𝐷𝑡

α𝑥(𝑡) =
1

Γ(1−α)
∫

𝑥′(τ)

(𝑡−τ)α 𝑑𝜏
𝑡

𝑡0
.               (11) 

 

And in the same way 

 
1

2
 𝑡0
𝑐 𝐷𝑡

α𝑥2(𝑡) =
1

Γ(1−α)
∫

𝑥(τ)𝑥′(τ)

(𝑡−τ)α 𝑑𝜏
𝑡

𝑡0
.              (12) 

 

So, expression (10) can be written as 

 
1

Γ(1−α)
∫

|𝑥(𝑡)−𝑥(τ)|𝑥′(τ)

(𝑡−τ)α 𝑑τ
𝑡

𝑡0
≥ 0.               (13) 

 

Let us define the auxiliar variable 𝑦(τ) = 𝑥(𝑡) − 𝑥(τ), 

which implies that  𝑦′(τ) =
𝑑𝑦(τ)

𝑑τ
= −

𝑑𝑥(τ)

𝑑τ
. In this way, 

expression (13) can be written as 

 
1

Γ(1−α)
∫

𝑦(τ)𝑦′(τ)

(𝑡−τ)α 𝑑τ
𝑡

𝑡0
≤ 0.                (14) 

 

Let us integrate by parts expression (14), defining 

 

𝑑𝑢 = 𝑦(τ)𝑦′(τ)𝑑𝜏 𝑢 =
1

2
𝑦2

𝑣 =
1

Γ(1 − α)
(𝑡 − τ)−α 𝑑𝑣 =

α

Γ(1 − α)
(𝑡 − τ)−α−1

 

 

In that way, expression (14) can be written as 

− [
𝑦2(τ)

2Γ(1−α)(𝑡−τ)α]|
τ=𝑡

+ [
𝑦0

2

2Γ(1−α)(𝑡−𝑡0)α] +

  +
α

2Γ(1−α)
∫

𝑦2(τ)

(𝑡−τ)α+1 𝑑τ
𝑡

𝑡0
≥ 0               (15) 

 

Let us check the first term of expression (15), which has 

an indetermination at  τ = 𝑡  so let us analyze the 

corresponding limit 

 

lim
τ→𝑡

𝑦2(𝜏)

2Γ(1−𝛼)(𝑡−𝜏)𝛼 =
1

2Γ(1−α)
lim
τ→𝑡

[𝑥(𝑡)−𝑥(τ)]2

(𝑡−τ)α   

                               =
1

2Γ(1−α)
lim
τ→𝑡

𝑥2(𝑡)−2𝑥(𝑡)𝑥(τ)+𝑥2(τ)

(𝑡−τ)α      

(16) 

 

Given that the function is derivable, L'Hospital rule can 

be applied 

 
1

2Γ(1−α)
lim
τ→𝑡

𝑥2(𝑡)−2𝑥(𝑡)𝑥(τ)+𝑥2(τ)

(𝑡−τ)α   

   =
1

2Γ(1−α)
lim
τ→𝑡

−2𝑥(𝑡)𝑥′(τ)+2𝑥(τ)𝑥′(τ)

−α(𝑡−τ)α−1   

   =
1

2Γ(1−α)
lim
τ→𝑡

[−2𝑥(𝑡)𝑥′(τ)+2𝑥(τ)𝑥′(τ)](𝑡−τ)1−α

−α
= 0.       

(17) 

 

So, expression (15) is reduced to 

 
𝑦0

2

2Γ(1−α)(𝑡−𝑡0)α +
α

2Γ(1−α)
∫

𝑦2(τ)

(𝑡−τ)α+1 𝑑τ
𝑡

𝑡0
≥ 0               (18) 

 

Expression (18) is clearly true, and this concludes the 

proof.      ∎ 

 

RESULTS and DISCUSSION 

Theorem 2.1. Consider the system (1). Ω ⊂ 𝑅 is a 

domain that contains the origin 𝑥 = 0. Suppose further 

that 𝑓(𝑥) ∈ 𝐶1(Ω) with 𝑓(0) = 0. If 𝑥 ⋅ 𝑓(𝑥) ≤ 0, then 

the equilibrium point 𝑥 = 0  is stable. Further, if 𝑥 ≠ 0 

implies 𝑥 ⋅ 𝑓(𝑥) < 0, then the equilibrium point 𝑥 = 0  
is asymptotically stable. 

 

Proof. As the basic tool for proof, we choose Lyapunov 

function 

 

𝑉(𝑥(𝑡)) =
1

2
[𝑥2(𝑡)+0𝐼𝑡

1−α𝑥2(𝑡)]               (19) 

 

where  0 < α < 1 . It is clear that 𝑉(0) = 0 and 

𝑉(𝑥(𝑡)) ≥ 0 from Lemma 1.2. Therefore 𝑉(𝑥(𝑡)) 

pozitive definite. By derivativing along trajectory (1) 

expression (19), we get 

 

�̇�(𝑥(𝑡))|(1) = 𝑥′(𝑡)𝑥(𝑡) +
1

2
𝐷0
 

𝑡
1( 0𝐼𝑡

1−α𝑥2(𝑡))  

                    = 𝑥(𝑡)[𝑓(𝑥)−𝑡0
𝐷𝑡

α𝑥(𝑡)] +
1

2
𝐷𝑡0

 
𝑡
α𝑥2(𝑡)  

                    =  𝑥(𝑡)𝑓(𝑥) − 𝑥(𝑡)𝑡0
𝐷𝑡

α𝑥(𝑡) 

                        +
1

2
 𝑡0

𝐷𝑡
α𝑥2(𝑡).                     (20) 
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where 𝑥(𝑡) satisfies the system (1). By Lemma 1.4 the 

equality (20), can be written as 

 

�̇�(𝑥(𝑡))|(1) ≤ 𝑥(𝑡)𝑓(𝑥) − 𝑥(𝑡)𝑡0
𝐷𝑡

α𝑥(𝑡)  

                          + 𝑥(𝑡)𝑡0
𝐷𝑡

α𝑥(𝑡) = 𝑥(𝑡)𝑓(𝑥) ≤ 0.        

(21) 

 

Thus the equilibrium point 𝑥(𝑡) = 0 of the system (1) is 

stable. Obviously, if  𝑥(𝑡) ≠ 0 implies  𝑥(𝑡) ∙

𝑓(𝑥(𝑡)) < 0 then 𝑓(𝑥(𝑡)) ≢ 0. It follows that the state 

𝑥(𝑡) of the system (1) satisfies  𝑥(𝑡) ≢ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Therefore 𝑥′(𝑡) ≢ 0. Thus, 𝑥(𝑡)𝑓(𝑥) < 0. So the 

system (1) is asymptotically stable. This completes the 

proof.   ∎ 

 

Theorem 2.2. Consider the fractional differential 

equation (2).  Ω ⊂ 𝑅 is a domain that contains the origin 

𝑥 = 0. Suppose further that 𝑓, 𝑔 ∈ 𝐶1(Ω) with 𝑓(0) =
0, 𝑔(0) = 0. If 𝑥 ⋅ 𝑓(𝑥) ≤ 0 and 𝑦 ⋅ 𝑔(𝑦) ≥ 0, then the 

equilibrium point 𝑥 = 0  is stable. Further, if 𝑥 ≠ 0 and 

𝑦 ≠ 0  implies 𝑥 ⋅ 𝑓(𝑥) < 0 and 𝑦 ⋅ 𝑔(𝑦) > 0, then the 

equilibrium point 𝑥 = 0  is asymptotically stable. 

 

Proof. Fractional differential equation (2), we write as 

differential equation system 

 

𝑥′(𝑡) = 𝑦(𝑡),

𝑦′(𝑡) = −𝑔(𝑦(𝑡))−0𝐷𝑡
α𝑦(𝑡) + 𝑓(𝑥(𝑡)).

              (22) 

 

For proof, we choose Lyapunov function as 

 

𝑉(𝑥(𝑡), 𝑦(𝑡)) =
1

2
[𝑦(𝑡)]2 +

1

2
 0𝐼𝑡

1−α𝑦2(𝑡)  

                              − ∫ 𝑓(𝑠)𝑑𝑠
𝑥(𝑡)

0
                             (23) 

 

Obviously,  𝑉(0,0) = 0 and 𝑉(𝑥(𝑡), 𝑦(𝑡)) ≥ 0 from 

Lemma 1.2. So 𝑉(𝑥(𝑡), 𝑦(𝑡)) pozitive definite. By 

derivativing along trajectory (22) expression (23), we 

get 

 

�̇�(𝑥(𝑡), 𝑦(𝑡))|(22) = −𝑥′(𝑡)𝑓(𝑥) + 𝑦′(𝑡)𝑦(𝑡)  

                                      +
1

2
𝐷0

 
𝑡
1( 0𝐼𝑡

1−𝛼𝑦2(𝑡))  

                                 = −𝑦(𝑡)𝑓(𝑥) + 𝑦(𝑡)[−𝑔(𝑦(𝑡))  

                                     −0𝐷𝑡
α𝑦(𝑡) + 𝑓(𝑥)] +

1

2
 0𝐷𝑡

α𝑦2(𝑡)  

                                = −𝑦(𝑡)𝑓(𝑥) − 𝑦(𝑡)𝑔(𝑦(𝑡))  

                                    −𝑦(𝑡)0𝐷𝑡
α𝑦(𝑡) + 𝑦(𝑡)𝑓(𝑥)  

                                    +
1

2
 0𝐷𝑡

α𝑦2(𝑡)                      (24) 

 

By Lemma 1.4 the equality (24), can be written as 

 

�̇�(𝑥(𝑡), 𝑦(𝑡))|(22) ≤ −𝑦(𝑡)𝑔(𝑦(𝑡)) − 𝑦(𝑡)0𝐷𝑡
α𝑦(𝑡) 

                                          +𝑦(𝑡)0𝐷𝑡
α𝑦(𝑡)  

                                     = −𝑦(𝑡)𝑔(𝑦(𝑡))                            

(25) 

 

So �̇�(𝑥(𝑡), 𝑦(𝑡))|(22) ≤ 0. Therefore the equilibrium 

point 𝑥(𝑡) = 0 of the system (22) is stable. Obviously, 

if 𝑥(𝑡) ≠ 0 and 𝑦(𝑡) ≠ 0  implies 𝑥(𝑡) ⋅ 𝑓(𝑥(𝑡)) < 0 

and 𝑦(𝑡) ⋅ 𝑔(𝑦(𝑡)) > 0 then 𝑓(𝑥(𝑡)) ≢ 0 and 

𝑔(𝑦(𝑡)) ≢ 0. It follows that the state (𝑥(𝑡), 𝑦(𝑡)) of the 

system (22) satisfies  𝑦(𝑡) ≢ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  So solution of 

the system (22) is asymptotically stable. This completes 

the proof.∎ 

 

Example 2.1. We consider fractional differential 

equation 

 

𝑥′(𝑡)+0𝐷𝑡
α𝑥(𝑡) = −𝑥5(𝑡)                (26) 

 

where 0 < α < 1 and Ω = 𝑅. Denote 𝑓(𝑥) = −𝑥5(𝑡). 

Because of 𝑥𝑓(𝑥) = −𝑥6(𝑡) ≤ 0, by Theorem 2.1 the 

equilibrium point 𝑥 = 0 of (26) is stable. Obviously, 

𝑥 ≠ 0 implies 𝑥𝑓(𝑥) < 0. By Theorem 2.1 the 

equilibrium point 𝑥 = 0 of (26) is asymptotically stable. 

 

Example 2.2. We consider fractional differential 

equation 

 

𝑥′′(𝑡) + [𝑥′(𝑡)]3(2 + sin(𝑥′(𝑡)))+0𝐷𝑡
α𝑥(𝑡)  

           = −𝑥(𝑡)𝑒𝑥(𝑡)                             (27) 

 

where 0 < α < 1 and Ω = 𝑅. Denote 𝑓(𝑥) =

−𝑥(𝑡)𝑒𝑥(𝑡) and 𝑔(𝑦(𝑡)) = 𝑦3(𝑡)(2 + sin(𝑦(𝑡))). 

Because of 𝑥𝑓(𝑥) = −𝑥2(𝑡)𝑒𝑥(𝑡) ≤ 0 and 

𝑦(𝑡)𝑔(𝑦(𝑡)) = 𝑦4(𝑡)(2 + sin(𝑦(𝑡))) ≥ 0, by Theorem 

2.2 the equilibrium point 𝑥 = 0 of (27) is stable. 

Obviously, 𝑥 ≠ 0 and 𝑦 ≠ 0 implies 𝑥𝑓(𝑥) < 0 and 

𝑦𝑔(𝑦) > 0. By Theorem 2.2 the equilibrium point 𝑥 =
0 of (27) is asymptotically stable. 
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