Yıl 2020, Cilt 59 , Sayı 1, Sayfalar 71 - 81 2020-03-13

Targeting of Metallic Nanoparticles
Metalik nanopartiküllerin hedeflendirilmesi

Emel Öykü ÇETİN UYANIKGİL [1] , Derya Selcen SALMANOĞLU [2]

The aim of targeted drug delivery systems are increase therapeutic efficacy, improve drug localization, provide controlled release of the active substance and decrease drug toxicity. In this respect, metallic nanoparticles provide a new dimension in the achievement of these aims in the treatment of several diseases and the simplicity and ease of preparation of these particles have attracted the attention of the scientific community. The aim of this review is summarize the properties, classification and use of metal nanoparticles and discuss the use of metallic nanoparticles as drug delivery systems in the literature.
Hedeflendirilmiş ilaç taşıyıcı sistemlerin amacı, terapötik etkinliği arttırmak, etkin maddenin kontrollü salımını sağlamayı, ilaç lokalizasyonunu iyileştirmeyi ve ilaç toksisitesini azaltmayı amaçlamaktadır. Bu bakımdan, metalik nanopartiküller, çeşitli hastalıkların tedavisinde bu amaçların yerine getirilmesinde yeni bir boyut sunar ve bu partiküllerin sadeliği ve hazırlanma kolaylığı, bilim dünyasının ilgisine neden olmuştur. Bu derlemenin amacı, metal nanopartiküllerin özelliklerini, sınıflandırılmalarını ve hedeflendirilmiş ilaç taşımada kullanımını özetlenmesi ve metalik nanopartiküllerin ilaç taşıyıcı sistem olarak kullanımının literatür eşliğinde tartışılmasıdır.
  • Kang YS, Risbud S, Rabolt JF, Stroeve P. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater. 1996; 8: 2209–11.
  • Pankhurst QA, Connolly J, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine. Journal of physics D: Applied physics. 2003; 36: R167.
  • Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 2006; 13: 283–7.
  • Rudge S, Peterson C, Vessely C, Koda J, Stevens S, Catterall L. Adsorption and desorption of chemotherapeutic drugs from a magnetically targeted carrier (MTC). J Control Release. 2001; 74: 335–40.
  • Appenzeller T. The man who dared to think small. Science. 1991; 254: 1300.
  • Frank G, Langer R, Farokhzad OC. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block coploymers. PNAS 2008; 105 (7): 2586.
  • Chouhan R, Bajpai AK. Real time in vitro studies of doxorubicin release from PHEMA nanoparticles. J Nanobiotechnology 2009; 7 (5): 7.
  • Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J RespirCrit Care Med. 2005; 172 (12): 1487-90.
  • Susa M, Iyer AK, Ryu K, Hornicek FJ, Mankin H, Amiji MM, Duan Z. Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma. BMCCancer 2009; 9: 399-403.
  • Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. CurrDrugDiscovTechnol 2009; 6: 43-51.
  • Varshosaz J, Farzan M. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma. World J Gastroenterol 2015; 21 (42): 12022-41.
  • Coelho SM. Delivery of biomolecules by functionalized inorganic/organic nanoparticles thesis silvia. Thesis submitted to the University of Porto for a Doctor of Philosophy in Chemical and Biological Engineering. 2013.
  • Selvan ST, Tan TTY, Yi DK, et al. Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir. 2010; 26: 11631–41.
  • Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I et al. Gold nanoparticles for the development of clinical diagnosis methods. Anal BioanalChem. 2008; 391: 943–50.
  • Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J PharmPharmacol. 2008; 60: 977–85.
  • Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J PharmBioallSci 2010; 2: 282-9.
  • Sau TK, Rogach AL, Jackel F, Klar TA, Feldmann J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 2010; 22: 1805–25.
  • Sperling, RA, RiveraGil, P, Zhang, F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. ChemSocRev 2008; 37: 1896–1908.
  • Chen H, Shao L, Ming T, Sun Z, Zhao C, Yang B, et al. Understanding the photothermal conversion efficiency of gold nanocrystals. Small 2010; 6: 2272–80.
  • Day ES, Morton JG, West JL. Nanoparticles for thermal cancer therapy. J BiomechEng 2009; 131:074001.
  • Piñón-Segundo E, Mendoza-Muñoz N, Quintanar-Guerrero D. Nanoparticles as Dental Drug-Delivery Systems. Nanobiomaterials in Clinical Dentistry 2013; 475-95.
  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials:history, sources, toxicity and regulations. Beilstein J. Nanotechnol 2018; 9: 1050–74.
  • Yiğit Küçükçobanoğlu Y, Yıldız AktaĢ L. Nanokompozit kaynağı ve uygulama alanı olarak bitkiler. Marmara Fen Bilimleri Dergisi 2018; 4: 429-36.
  • Li C, Shuford KL, Park Q, Cai W, Li Y, Lee EJ, et al. High‐yield synthesis of single‐crystalline gold nano‐octahedra. AngewandteChemie 2007; 46 (18): 3264-8.
  • Granqvist CG, Buhrman RA. Ultrafine metal particles. Journal of applied. Physics 1976;47: 2200-19.
  • Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles:nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences 2009; 30 (11): 592-9.
  • Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. Journal of Drug Targeting 2018; 26 (8): 617-32.
  • Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J AmChemSoc 2010;132: 4678–84.
  • Hackenberg S, Scherzed A, Harnisch W, Froelich K, Ginzkey C, Koehler C et al. Antitumor activity of photo-stimulated zincoxide nanoparticles combined with paclitaxel or cisplatin in HNSCC celllines. J Photochem Photobiol B: Biol. 2012; 114: 87–93.
  • Guo D, Wu C, Jiang H, Li Q, Wang X, Chen B. et al. Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicinagainst leukemia cancer cells under UV irradiation. J Photochem Photobiol B: Biol 2008;93:119–26.
  • Gibson JD, Khanal BP, Zubarev ER. Paclitaxel functionalized gold nanoparticles. J.Am. Chem. Soc 2007; 129 (37): 11653–61.
  • Qian X, Peng XH, Ansari DO, YinGoen Q, Chen GZ, Shin DM et al. Invivo tumor target ingand spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature biotechnology 2008;26: 83-90.
  • Hwu JR, Lin YS, Josephrajan T, Hsu MH, Cheng FY, Yeh CS et al. Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. Journal of the American Chemical Society 2009; 131 (1): 66–8.
  • Sershen SR, Westcott SL, Halas NJ, West JL. Temperature-sensitive polymer-nanoshell composites for photo thermally modulated drug delivery. Journal of Biomedical Materials Research 2000;51(3):293–8.
  • Yavuz MS, Cheng Y, Chen J, Cobley MC, Zhang Q, Rycenga M et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Materials 2009; 8 (12): 935–9.
  • Eigler DM, Schweizer EK. Positioning single atoms with a scanning tunnellingmicroscope 1990; 344 (6266): 524–6.
  • Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W. Unique roles of gold nanoparticles in drugdelivery, targeting and imaging applications. Molecules 2017; 22: 1445.
  • Chen YH, Tsai CY, Huang PY, Chang MY, Cheng PC, Chou CH. et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol. Pharmaceut 2007; 4: 713–22.
  • Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 2011; 5: 3679–92.
  • Blasiak B, Veggel FC, Tomanek B. Applications of nanoparticles for MRIcancer diagnosis and therapy. J. Nanomater 2013;12.
  • Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S. et al. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 2008; 68: 1970–8.
  • Coelho SC, Almeida GM, Santos-Silva F, Pereira MC, Coelho MA. Enhancing the efficiency of bortezomib conjugated to pegylated gold nanoparticles: An in vitro study on human pancreatic cancer cells and adenocarcinoma human lung alveolar basal epithelial cells. Expert Opin. Drug Deliv 2016; 13: 1075–81.
  • Daduang J, Palasap A, Daduang S, Boonsiri P, Suwannalert P, Limpaiboon T. Gallic acid enhancement of gold nanoparticle anticancer activity in cervical cancer cells. Asian Pac. J. Cancer Prev 2015; 16: 169–74.
  • Bao H, Zhang Q, Xu H, Yan Z. Effects of nanoparticle size on antitumor activity of 10-hydroxycamptotheci nconjugated gold nanoparticles: In vitro and in vivo studies. Int. J. Nanomed 2016; 11: 929–40.
  • Coelho SC, Almeida GM, Pereira M.C, Santos-Silva F, Coelho MA. Functionalized gold nanoparticles improve afatinib delivery into cancer cells. Expert Opin. Drug Deliv 2016; 13: 133–41.
  • Sironmani A, Daniel K. Silver Nanoparticles – Universal Multifunctional Nanoparticles for BioSensing, Imaging for Diagnostics and TargetedDrug Delivery for Therapeutic Applications. Drug Discovery and Development – Present and Future 2011; 463-84.
  • Prashob Peter KJ. Multi-Functional Silver Nanoparticles for Drug Delivery: A Review. Int J Cur Res Rev 2017; 9 (8).
  • Pugazhendhia A, Edison TNJI, Karuppusamy I, Kathirvel B. Inorganic nanoparticles: A potential cancer therapy for human welfare. International Journal of Pharmaceutics 2018; 539: 104–11.
  • Sadat Shandiz SA, Shafiee Ardestani M, Shahbazzadeh D, Assadi A, Ahangari Cohan R, Asgary V et al. Novel imatinib-loaded silver nanoparticles for enhanced apoptosis of human breast cancer MCF-7 cells. Artif Cells Nanomed Biotechnol 2017; 45: 1–10.
  • Goyal G, Hwang J, Aviral J, Seo Y, Jo Y, Son J et al. Green synthesis of silver nanoparticles using b-glucan, and their incorporation into doxorubicinloaded water-in-oil nanoemulsions for antitumor and antibacterial applications. J Ind Eng Chem 2016; 47: 179–86.
  • Lewis and Harrison, LLC. Generally recognized as safe determination for silicon dioxide when added directly and/or ındirectly to human food [Internet]. Fda 2010 [cited 9 August 2015]. Available from: http://www.fda.gov/ucm/groups/fdagov-public/@fdagov-foods-gen/documents/document/ucm269494.pdf.
  • Pandey P, Dahıya M. A Brıef revıew on ınorganıc nanopartıcles. J Crit Rev 2016; 3 (3):18-26.
  • Giret S, Wong Chi Man M, Carce C. Mesoporous-silica-functionalized nanoparticles for drug delivery. Chem. Eur. J. 2015; 21: 13850 – 65.
  • Desai D, Prabhakar N, Mamaeva V, Karaman Dġ, Lähdeniemi IA, Sahlgren C et al. Targeted modulation of cell differentiation in distinct regions of the gastrointestinal tract via oral administration of differently PEG-PEI functionalized mesoporous silica nanoparticlesInternational Journal of Nanomedicine 2016; 11: 299–313.
  • Yesil-Celiktas O, Pala C, Cetin-Uyanikgil EO, Sevimli-Gur C. Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells. Analytical Biochemistry 2017; 519: 1-7.
  • Xu, X., Wu, C., Bai, A., Liu, X., Lv, H., Liu, Y. Folate-functionalized mesoporous silica nanoparticles as a liver tumor-targeted drug delivery system to ımprove the antitumor effect of paclitaxel. Journal of Nanomaterials 2017.
  • Gary-Bobo M., Brevet D, Benkirane-Jessel N, Raehm L, Maillard P, Garcia M. et al. Hyaluronic acid-functionalized mesoporous silica nanoparticles for efficient photodynamic therapy of cancer cells. Photodiagnosis and Photodynamic Therapy 2012; 9: 256—60.
  • Lu J, Li Z, Zink JI, Tamanoi F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine: Nanotechnology, Biology, and Medicine 2012; 8: 212–20.
  • Chen WH, Luo GF, Lei Q, Cao FY, Fan JX, Qiu WX. Rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy. Biomaterials 2016; 76: 87-101.
  • Zheng T, Wang A, Hu D, Wang Y. Tumor-targeting templated silica nanoparticles as a dual-drug delivery system for anti-angiogenic ovarian cancer therapy. Experimental and Therapeutic Medicine 2017; 14: 2162-70.
  • Deng ZW, Zhen ZP, Hu XX, Wu SL, Xu ZS, Chu PK. Biomaterials 2011; 32: 4976-86.
  • Stevens EV, Wells A, Shin JH, Liu J, Der CJ, Schoenfisch MH. Nitric oxide-releasing silica nanoparticle inhibition of ovarian cancer cell growth. Mol Pharm 2010; 7 (3): 775–85.
  • Roy I, Ohulchanskyy TY, Pudavar HE, Bergey EJ, Oseroff AR, Morgan J. et al. Ceramic-Based Nanoparticles Entrapping Water-Insoluble Photosensitizing Anticancer Drugs: A Novel Drug-Carrier System for Photodynamic Therapy. J.Am .Chem.Soc. 2003; 125: 7860-5.
  • Huang Y, Mao K, Zhang B, Zhao Y. Superparamagnetic iron oxide nanoparticles conjugated with folic acidfor dual target-specific drug delivery and MRI in cancer theranostics. Materials Science and Engineering C 2017; 70: 763–71.
Birincil Dil tr
Konular Sağlık Bilimleri ve Hizmetleri
Bölüm Derlemeler

Orcid: 0000-0001-8822-9130
Yazar: Emel Öykü ÇETİN UYANIKGİL (Sorumlu Yazar)
Kurum: Ege Üniversitesi Eczacılık Fakültesi Farmasötik Teknoloji Anabilim Dalı, Bornova
Ülke: Turkey

Orcid: 0000-0001-7435-1725
Yazar: Derya Selcen SALMANOĞLU
Kurum: Ege Üniversitesi Fen Bilimleri Enstitüsü Biyomedikal Teknolojiler Anabilim Dalı, Ġzmir
Ülke: Turkey


Yayımlanma Tarihi : 13 Mart 2020

Bibtex @derleme { etd698596, journal = {Ege Tıp Dergisi}, issn = {1016-9113}, eissn = {2147-6500}, address = {}, publisher = {Ege Üniversitesi}, year = {2020}, volume = {59}, pages = {71 - 81}, doi = {10.19161/etd.698596}, title = {Metalik nanopartiküllerin hedeflendirilmesi}, key = {cite}, author = {ÇETİN UYANIKGİL, Emel Öykü and SALMANOĞLU, Derya Selcen} }
APA ÇETİN UYANIKGİL, E , SALMANOĞLU, D . (2020). Metalik nanopartiküllerin hedeflendirilmesi. Ege Tıp Dergisi , 59 (1) , 71-81 . DOI: 10.19161/etd.698596
MLA ÇETİN UYANIKGİL, E , SALMANOĞLU, D . "Metalik nanopartiküllerin hedeflendirilmesi". Ege Tıp Dergisi 59 (2020 ): 71-81 <http://egetipdergisi.com.tr/tr/issue/52885/698596>
Chicago ÇETİN UYANIKGİL, E , SALMANOĞLU, D . "Metalik nanopartiküllerin hedeflendirilmesi". Ege Tıp Dergisi 59 (2020 ): 71-81
RIS TY - JOUR T1 - Metalik nanopartiküllerin hedeflendirilmesi AU - Emel Öykü ÇETİN UYANIKGİL , Derya Selcen SALMANOĞLU Y1 - 2020 PY - 2020 N1 - doi: 10.19161/etd.698596 DO - 10.19161/etd.698596 T2 - Ege Tıp Dergisi JF - Journal JO - JOR SP - 71 EP - 81 VL - 59 IS - 1 SN - 1016-9113-2147-6500 M3 - doi: 10.19161/etd.698596 UR - https://doi.org/10.19161/etd.698596 Y2 - 2020 ER -
EndNote %0 Ege Tıp Dergisi Metalik nanopartiküllerin hedeflendirilmesi %A Emel Öykü ÇETİN UYANIKGİL , Derya Selcen SALMANOĞLU %T Metalik nanopartiküllerin hedeflendirilmesi %D 2020 %J Ege Tıp Dergisi %P 1016-9113-2147-6500 %V 59 %N 1 %R doi: 10.19161/etd.698596 %U 10.19161/etd.698596
ISNAD ÇETİN UYANIKGİL, Emel Öykü , SALMANOĞLU, Derya Selcen . "Metalik nanopartiküllerin hedeflendirilmesi". Ege Tıp Dergisi 59 / 1 (Mart 2020): 71-81 . https://doi.org/10.19161/etd.698596
AMA ÇETİN UYANIKGİL E , SALMANOĞLU D . Metalik nanopartiküllerin hedeflendirilmesi. ETD. 2020; 59(1): 71-81.
Vancouver ÇETİN UYANIKGİL E , SALMANOĞLU D . Metalik nanopartiküllerin hedeflendirilmesi. Ege Tıp Dergisi. 2020; 59(1): 81-71.

Makalenin Yazarları
Derya Selcen SALMANOĞLU [2]