BibTex RIS Kaynak Göster

Experimental Models Used in Hypertension Research

Yıl 2016, Cilt: 6 Sayı: 1, 35 - 43, 13.05.2016

Öz

Hypertension is the most important risk factor for cardiovascular diseases such as stroke, coronary artery disease and sudden cardiac death. Depending on the etiology, there are many different hypertension types, these types of hypertension are investigated in different models.The use of experimental animal models has provided valuable information on many aspects of hypertension such as etiology, pathophysiology, complication and treatment. For this purpose, appropriate experimental method and animal to be used in these studies should be selected considering the design of the study and its limitations. Since significant differences exist between hypertension in experimental animals and human hypertension the extrapolation of results obtained from experimental studies to humans is extremely important. In this review, various experimental models which are used in hypertension research were evaluated.

Kaynakça

  • Monassier L, Combe R, Fertak LE. Mouse models of hypertension. Drug Discov Today Dis Models 2006; 3: 273-81. [CrossRef]
  • Taş-Tuna A. Hipertansiyon Modelleri. Turkiye Klinikleri J Cardiovascular Surgery 2013; 5: 45-8.
  • Yetik-Anacak G, Sevin G. Deneysel Hipertansiyon Modelleri. Turkiye Klinikleri J Nephrol-Special Topics 2010; 3: 50-62.
  • Doggrell SA, Brown L. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 1998; 39: 89-105. [CrossRef]
  • Johns C, Gavras I, Handy DE, Salomao A, Gavras H. Models of Experimen- tal Hypertension in Mice. Hypertension 1996; 28: 1064-9. [CrossRef]
  • Lerman LO, Chade AR, Sica V, Napoli C. Animal models of hypertension: an overview. J Lab Clin Med 2005; 146: 160-73. [CrossRef]
  • Badyal K, Lata H, Dadhich AP. Animal models of Hypertension and effect of drugs. Indian J Pharmacol 2003; 35: 349-62.
  • Tasić D, Najman S. Certain experimental models in biomedical research of hypertension. Medicine and Biology 2008; 15: 81-4.
  • Ferrario CM. Importance of rennin-angiotensin-aldosterone system (RAS) in the physiology and pathology of hypertension. Drugs 1990; 39: Suppl 2: 1-8. [CrossRef]
  • Ganong WF. Review of medical physiology. 19th ed. London: Prentice Hall International Inc; 1999. p.670-5.
  • Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies on experimental hypertension: I. The production of persistent elevation of systolic blood pres- sure by means of renal ischemia. J Exp Med 1934; 59: 347-79. [CrossRef]
  • Boura ALA, Green AF. Antihypertensive agents. In: Laurence DR, Bacha- rach AL. Eds. Evaluation of drug activities pharmacometrics. Vol.1, Lon- don: Acaedemic Press; 1964. p.431-53. [CrossRef]
  • Mok JSL, Kong ML, Hutchinson JS. Cardiovascular effects of central and peripheral administration of dopamine in hypertensive and normoten- sive rats. Indian J Pharmacol 1985; 17: 192-6.
  • Goldblatt H. Direct determination of systemic blood pressure and pro- duction of hypertension in rabbit. Proc Soc Exp Bio Med 1960; 105: 213- 6. [CrossRef]
  • Cangiano JL, Rodriguez-Sargent C, Martinez-Maldonado M. Effects of antihypertensive treatment on systolic blood pressure and renin in ex- perimental hypertension in rats. J Pharmacol Exp Ther 1979; 208: 310-3.
  • Guyton AC, Hall JE. Textbook of Medical Physiology. 10th ed. Pennsylva- nia: WB Saunders Company; 1998. p.201-208.
  • Gavras H, Brunner HR, Thurston H, Laragh JH. Reciprocation of renin de- pendency with sodium volume dependency in renal hypertension. Sci- ence 1975; 188: 1316-7. [CrossRef]
  • Freeman RH, Davis JO, Watkins BE, Stephens GA, DeForrest JM. Effects of continuous converting enzyme blockade on renovascular hypertension in the rat. Am J Physiol Renal Physiol 1979; 236: F21-4.
  • Brunner HR, Kirshman JD, Sealey JE, Laragh JH. Hypertension of renal or- igin: evidence for two different mechanisms. Science 1971; 174: 1344-6. [CrossRef]
  • Sarikonda KV, Watson RE, Opara OC, DiPette DJ. Experimental animal mod- els of hypertension. J Pharmacol Exp Ther 2009; 3: 158-65. [CrossRef]
  • Page IH. The production of persistent arterial hypertension by cello- phane perinephritis. J Am Med Ass 1939; 113: 2046. [CrossRef]
  • Roberts-Thomson P, McRitchie RJ, Chalmers JP. Experimental hypertension produces diverse changes in the regional vascular responses to endothe- lin-1 in the rabbit and the rat. J Hypertens 1994; 12: 1225-34. [CrossRef]
  • Grollman A. The effect of various hypotensive agents on the arterial blood pressure of hypertensive rats and dogs. J Pharmacol Exp Ther 1955; 174: 263-70.
  • Thiedemann KU, Holubarsch C, Medugarac I, Jacob R. Connective tissue contraction and myocardial stiffness in pressure overload hypertrophy: a combined study of morphologic, morphometric, biochemical and me- chanical parameters. Basic Res Cardio 1983; 78: 140-55. [CrossRef]
  • Gabel RA, Kivlighn SD, Siegl PK. The effect of chronically administered L-158,809 on the development of hypertension in subtotally nephrecto- mised Munich Wistar rats. FASEB J 1992; 6: 982.
  • Anderson S, Meyer TW, Rennke HG, Brenner BM. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Inves 1985; 76: 612-9. [CrossRef]
  • Navarro-Cid J, Maeso R, Perez-Vizcaino F, Cachofeiro V, Ruilope LM, Tam- argo J, et al. Effects of losartan on blood pressure, metabolic alterations, and vascular reactivity in the fructose-induced hypertensive rat. Hyper- tension 1995; 26: 1074-8. [CrossRef]
  • Kang DG, Moon MK, Sohn EJ, Lee DH, Lee HS. Effects of morin on blood pressure and metabolic changes in fructose-induced hypertensive rats. Biol Pharm Bull 2004; 27: 1779-83. [CrossRef]
  • Giani JF, Mayer MA, Mu-oz MC, Silberman EA, Höcht C, Taira CA, et al. Chronic infusion of angiotensin-(1–7) improves insulin resistance and hypertension induced by a high-fructose diet in rats. Am J Physiol Endoc M 2009; 296: 262-71.
  • Dahl LK. Possible role of salt intake in the development of essential hy- pertension. In: Pork KD, Cottier PT, eds. Essential hypertension-an inter- national symposium. Berlin: Springer-Verlag; 1960. p.53-65. [CrossRef]
  • Rathod SP, Shah N, Balaraman R. Antihypertensive effect of dietary calci- um and diltiazem, a calcium channel blocker on experimentally induced hypertensive rats. Indian J Pharmacol 1997; 29: 99-104.
  • Coleman TG, Guyton AC, Young DB, DeClue JW, Norman RA, Manning RD, et al. The role of kidney in essential hypertension. Clin Exp Pharm Physiol 1975; 2: 571-81. [CrossRef]
  • Roberts CK, Vaziri ND, Wang XQ, Barnard RJ. Enhanced NO inactivation an hypertension induced by a high-fat, refined-carbohydrate diet. Hyper- tension 2000; 36: 423-9. [CrossRef]
  • Roberts CK, Vaziri ND, Sindhu RK, Barnard RJ. A highfat, refined carbohy- drate diet affects renal NO synthase protein expression and salt sensitiv- ity. J Appl Physiol 2003; 94: 941-6. [CrossRef]
  • Hwang IS, Ho H, Hoffman BB, Reaven MG. Fructose induced insulin resis- tance and hypertension in rats. Hypertension 1987;10: 512-6. [CrossRef]
  • Reaven MG, Twersky J, Chang H. Abnormalities in carbohydrate and lipid metabolism in dahl rats. Hypertension 1991; 18: 630-5. [CrossRef]
  • Erlich Y, Rosenthal T. Contribution of nitric oxide to the beneficial effects of enalapril in the fructose-induced hyperinsulinemic rats. Hypertension 1996; 28: 754-7. [CrossRef]
  • Madar Z, Malamed EC, Zimlichman R. Acarbose reduces blood pressure in sucrose-induced hypertension in rats. J Med Sci 1997; 33: 153-9.
  • Rosen P, Ohly P, Gleiehmann H. Experimental benefit of moxonidine on glucose metabolism and insulin secretion in the fructose-fed rats. J Hy- pertension 1997; 15: 31-8. [CrossRef]
  • Selye H. Production of nephrosclerosis by overdosage with desoxycorti- costerone acetate. Can Med Assoc J 1942; 47: 515-9.
  • Terris JM, Berecek KH, Cohen EL, Stanley JC, Whitehouse WM Jr, Bohr DF. Deoxycorticosterone hypertension in the pig. Clin Sci Mol Med 1976; 3: 303-5. [CrossRef]
  • Seyle H, Bois P. The hormonal production of nephrosclerosis and periar- teritis nodosa in the primate. Br Med J 1957; 1: 183-6. [CrossRef]
  • Crofton JT, Share L. Gonadal hormones modulate deoxycorticosterone-salt hy- pertension in male and female rats. Hypertension 1997; 29: 494-9. [CrossRef]
  • Sharma PK, Vyawahare NS, Ladhha A. Preclinical screening model for hy- pertension in rodents: A review. Pharmacologyonline 2010; 3: 458-72.
  • Sahan-Firat S, Jennings BL, Yaghini FA, Song CY, Estes AM, Fang XR, et al. 2,3’,4,5’-Tetramethoxystilbene prevents deoxycorticosterone-salt-in- duced hypertension: contribution of cytochrome P-450 1B1. Am J Physi- ol Heart Circ Physiol 2010; 299: 1891-901. [CrossRef]
  • Pinto YM, Paul M, Ganten D. Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res 1998; 39: 77-88. [CrossRef]
  • Dahl LK, Heine M, Tassinari L. Effects of chronic excess salt ingestion: fur- ther demonstration that genetic factors influence the development of hypertension: evidence from experimental hypertension due to cortisone and to adrenal regeneration. J Exp Med 1965; 122: 533-45. [CrossRef]
  • Knowlton AI, Loeb EN, Stoerk HC, White JP, Heffernan JF. Induction of ar- terial hypertension in normal and adrenalectomised rats given cortisone acetate. J Exp Med 1952; 96: 187-205. [CrossRef]
  • Zhang Y, Hu L, Mori TA, Barden A, Croft KD, Whitworth JA. Arachidonic acid metabolism in glucocorticoid-induced hypertension. Clin Exp Phar- macol Physiol 2008; 35: 557-62. [CrossRef]
  • Sharma ML. Antihypertensive activity of scoparone. Indian J Pharmacol 1985; 17: 219-22.
  • Kreiger EM. Neurogenic hypertension in the rat. Cir Res 1964; 15: 511-21. [CrossRef]
  • Reis DJ, Doba N, Nathan MA. Neurogenic arterial hypertension produced by brainstem lesion. In: Onesti G, Fernandes M, Kim KE, eds. Regulation of blood pressure by the central nervous system. New York: Grune and Stratton; 1976. p. 35-51.
  • Cowley AW, Liard JF, Guyton AC. Role of baroreceptor reflexes in daily control of arterial pressure and other variables in dog. Cir Res 1973; 32: 564-78. [CrossRef]
  • Juskevich JC, Robinson DS, Whitehorn D. Effect of hypothalamic stimula- tion in spontaneously hypertensive and Wistar-Kyoto rats. Eur J Pharma- col 1978; 51: 429-39. [CrossRef]
  • Machado BH, Brody MJ. Role of the nucleus ambiguus in the regulation of heart rate and arterial pressure. Hypertension 1988; 11: 602-7. [CrossRef]
  • Hatton DC, DeMerritt J, Coste SC, McCarron DA. Stress induced hyperten- sion in the borderline hypertensive rat: stimulus duration. Physiol Behav 1993; 53: 635-41. [CrossRef]
  • Henry JP, Liu YY, Nadra WE, Qian CG, Mormede P, Lemaire V, et al. Psycho- social stress can induce chronic hypertension in normotensive strains of rats. Hypertension 1993; 21: 714-23. [CrossRef]
  • Lawler JE, Barker GF, Hubbard JW, Cox RH, Randall GW. Blood pressure and plasma renin activity responses to chronic stress in the borderline hypertensive rat. Physiol and Behav 1984; 32: 101-5. [CrossRef]
  • Okamoto K, Aoki K. Development of a strain of spontaneously hyperten- sive rats. Jpn Circ J 1963; 27: 282-93. [CrossRef]
  • Dornas WC, Silva ME. Animal models for the study of arterial hyperten- sion. J Biosci 2011; 36: 731-7. [CrossRef]
  • Zicha J, Kunes J. Ontogenetic aspects of hypertension development: analysis in the rat. Physiol Rev 1999; 79: 1227-82.
  • Trippodo NC, Frohlic ED. Similarities of genetic spontaneous hyperten- sion. Circ Res 1981; 48: 309-19. [CrossRef]
  • Smith TL, Hutchins PM. Central hemodynamics in the developmental stage of spontaneous hypertension in the unanesthetized rat. Hyperten- sion 1979; 1: 508-17. [CrossRef]
  • Engelmann GL, Vitullo JC, Gerrity RG. Morphometric analysis of cardiac hypertrophy during development, maturation, and senescence in spon- taneously hypertensive rats. Circ Res 1987; 60: 487-94. [CrossRef]
  • Smirk FH, Hall WH. Inherited hypertension in rats. Nature 1958; 182: 727-8. [CrossRef]
  • Bianchi G, Baer PG, Fox U, Dazzi L, Pagetti D, Giovannetti HM. Changes in renin, water balance and sodium balance in genetically hypertensive rats. Cir Res 1975; 36: 153-61. [CrossRef]
  • Dahl LK, Heine M, Tassinari L. Effects of chronic excess salt ingestion: evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Med 1962; 115: 1173-90. [CrossRef]
  • Zamir N, Gutman Y, Ben-Ishay D. Hypertension and brain catecholamines distribution in the Hebrew University Sabra H and N rats. Clin Sci Mol Med 1978; 55: 105-7. [CrossRef]
  • Vincent M, Bornet H, Berthezene F, Dupont J, Sassard J. Thyroid function and blood pressure in two new strains of spontaneously hypertensive and normotensive rats. Clin Sci Mol Med 1980; 54: 391-5.
  • Okamoto K, Aoki K. Establishment of stroke prone spontaneously hyper- tensive rats (SHR). Cir Res 1973; 34: 143-53.
  • Yamori Y. Predictive and preventive pathology of cardiovascular diseas- es. Acta Pathol Jpn 1989; 39: 683-705. [CrossRef]
  • Yamori Y, Horie R, Handa H, Sato M, Fukase M. Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke 1976; 7: 46-53. [CrossRef]
  • Dahl LK, Heine M, Tassinari L. Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 1962; 194: 480-2. [CrossRef]
  • Shehata MF. Important genetic checkpoints for insulin resistance in salt-sensitive (S) Dahl rats. Cardiovasc Diabetol 2008; 7: 19. [CrossRef]
  • Rapp JP, Dene H. Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension 1985; 7: 340-9. [CrossRef]
  • Campese VM. Salt sensitivity in hypertension: renal and cardiovascular implications. Hypertension 1994; 23: 531-50. [CrossRef]
  • Channa ML, Somova L, Nadar A. Facets of the metabolic syndrome in Dahl hypertensive rats. Cardiovas J S Afr 2004; 15: 61-3.
  • Sanders BJ, Lawler JE. The borderline hypertensive rat (BHR) as a model for environmentally-induced hypertension: a review and update. Neuro- sci Biobehav Rev 1992; 16: 207-17. [CrossRef]
  • Fuchs LC, Hoque AM, Clarke NL. Vascular and hemodynamic effects of behavioral stress in borderline hypertensive and Wistar-Kyoto rats. Am J Physiol Reg I 1998; 274: 375-82.
  • Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 1990; 344: 541-4. [CrossRef]
  • Itoh H, Mukoyama M, Pratt RE, Gibbons GH, Dzau VJ. Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J Clin Invest 1993; 91: 2268-74. [CrossRef]
  • Gorbea-Oppliger C, Kanagy NL, Fink GD. Losartan (DuP753) reverses angio- tensin-induced hypertension in conscious rats. FASEB J 1992; 6: 1810.
  • Krege SH, Hodgin JB, Hagaman JR, Smithies O. A non invasive computer- ized tail-cuff system for measuring blood pressure in mice. Hypertension 1995; 25: 1111-5. [CrossRef]
  • Ozkutlu U, Onat F, Aslan AN, Oktay S. Central muscarinic M2 cholinocep- tors involved in cholinergic hypertension. Eur J Pharmacol 1993; 250: 349-54. [CrossRef]
  • Smith EC, Padnos B, Cordon CJ. Peripheral versus central muscarin- ic effects on blood pressure, cardiac contractility heart rate, and body temperature in the rat monitored by radio telemetry. Pharmacol Toxicol 2001; 89: 35-42. [CrossRef]
  • Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373-6. [CrossRef]
  • Shepherd JT, Katusic ZS. Endothelium-derived vasoactive factors. Hyper- tension. 1991; 18: 76-85. [CrossRef]
  • Forstermann U, Nakan M, Tracey WR, Pollock JS. Isoforms of nitric oxide syn- thase: functions in the cardiovascular system. Eur Heart J 1993; 14: 10-15.
  • Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664-6. [CrossRef]
  • Baylis C, Mitruka B, Deng A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 1992; 90: 278-81. [CrossRef]
  • Ribeiro MO, Antunes E, de-Nucci G, Lovisolo SM, Zatz R. Chronic inhibi- tion of nitric oxide synthesis: a new model of arterial hypertension. Hy- pertension 1992; 20: 298-303. [CrossRef]
  • Li J, Deng LY, Grove K, Deschepper CF, Schiffrin EL. Comparison of effect of endothelin antagonism and angiotensin-converting enzyme inhibi- tion on blood and vascular structure in spontaneous hypertensive rats treated with N omega-nitro-L-arginine methyl ester. Hypertension 1996; 28: 188-95. [CrossRef]
  • Biancardi VC, Bergamaschi CT, Lopes OU, Campos RR. Sympathetic ac- tivation in rats with L-NAME-induced hypertension. Braz J Med Biol Res 2007; 40: 401-8. [CrossRef]
  • Bartunek J, Weinberg EO, Tajima M, Rohrbach S, Katz SE, Douglas PS, et al. Chronic N G-Nitro-LArginine methyl ester-induced hypertension novel molecular adaptation to systolic load in absence of hypertrophy. Circula- tion 2000; 101: 423-9. [CrossRef]
  • Yamakawa T, Tanaka S, Tamura K, Isoda F, Ukawa K, Yamakura Y, et al. Wistar fatty rat is obese and spontaneously hypertensive. Hypertension 1995; 25: 146-50. [CrossRef]
  • Combs CA, Katz MA, Kitzmiller JL, Brescia RJ. Experimental preeclampsia produced by chronic constriction of the lower aorta: validation with lon- gitudinal blood pressure measurements in conscious rhesus monkeys. Am J Obstet Gynecol 1993; 169: 215-23. [CrossRef]
  • Davisson RL, Hoffmann DS, Butz GM, Aldape G, Schlager G, Merrill DC, et al. Discovery of a spontaneous genetic mouse model of preeclampsia. Hypertension 2002; 39: 337-42. [CrossRef]
  • Kolatkar SB, Kulkarni SD, Joglekar GV. Quantitative evaluation of blood pres- sure responses in dogs to various vasoactive agents under the influence of commonly used anaesthetics. Indian J Pharmacol 1973; 5: 378-83.

Hipertansiyon Araştırmalarında Kullanılan Deneysel Modeller

Yıl 2016, Cilt: 6 Sayı: 1, 35 - 43, 13.05.2016

Öz

Hipertansiyon, inme, koroner arter hastalıkları ve ani kardiyak ölümleri gibi kardiyovasküler hastalıklar için en önemli risk faktörüdür. Etiyolojisine bağlı olarak birçok farklı hipertansiyon tipi bulunmakta olup, bu hipertansiyon tipleri farklı modellerde araştırılmaktadır. Deneysel hayvan modellerinin kullanımı hipertansiyonun etiyolojisi, patofizyolojisi, komplikasyonları ve tedavisi gibi pek çok konuda değerli bilgilerin elde edilmesini sağlamaktadır. Bu amaçla, çalışmalarda kullanılacak uygun deneysel yöntem ve deney hayvanı, araştırmanın tasarımı ve sınırlamaları düşünülerek seçilmelidir. Deney hayvanlarındaki hipertansiyon ile insanda görülen hipertansiyon arasında önemli farklılıklar olması nedeniyle deneysel çalışmalardan elde edilecek sonuçların insana ekstrapolasyonu da son derece önemlidir. Bu derlemede hipertansiyon araştırmalarında kullanılan çeşitli deneysel modeller incelenmiştir. 

Kaynakça

  • Monassier L, Combe R, Fertak LE. Mouse models of hypertension. Drug Discov Today Dis Models 2006; 3: 273-81. [CrossRef]
  • Taş-Tuna A. Hipertansiyon Modelleri. Turkiye Klinikleri J Cardiovascular Surgery 2013; 5: 45-8.
  • Yetik-Anacak G, Sevin G. Deneysel Hipertansiyon Modelleri. Turkiye Klinikleri J Nephrol-Special Topics 2010; 3: 50-62.
  • Doggrell SA, Brown L. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 1998; 39: 89-105. [CrossRef]
  • Johns C, Gavras I, Handy DE, Salomao A, Gavras H. Models of Experimen- tal Hypertension in Mice. Hypertension 1996; 28: 1064-9. [CrossRef]
  • Lerman LO, Chade AR, Sica V, Napoli C. Animal models of hypertension: an overview. J Lab Clin Med 2005; 146: 160-73. [CrossRef]
  • Badyal K, Lata H, Dadhich AP. Animal models of Hypertension and effect of drugs. Indian J Pharmacol 2003; 35: 349-62.
  • Tasić D, Najman S. Certain experimental models in biomedical research of hypertension. Medicine and Biology 2008; 15: 81-4.
  • Ferrario CM. Importance of rennin-angiotensin-aldosterone system (RAS) in the physiology and pathology of hypertension. Drugs 1990; 39: Suppl 2: 1-8. [CrossRef]
  • Ganong WF. Review of medical physiology. 19th ed. London: Prentice Hall International Inc; 1999. p.670-5.
  • Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies on experimental hypertension: I. The production of persistent elevation of systolic blood pres- sure by means of renal ischemia. J Exp Med 1934; 59: 347-79. [CrossRef]
  • Boura ALA, Green AF. Antihypertensive agents. In: Laurence DR, Bacha- rach AL. Eds. Evaluation of drug activities pharmacometrics. Vol.1, Lon- don: Acaedemic Press; 1964. p.431-53. [CrossRef]
  • Mok JSL, Kong ML, Hutchinson JS. Cardiovascular effects of central and peripheral administration of dopamine in hypertensive and normoten- sive rats. Indian J Pharmacol 1985; 17: 192-6.
  • Goldblatt H. Direct determination of systemic blood pressure and pro- duction of hypertension in rabbit. Proc Soc Exp Bio Med 1960; 105: 213- 6. [CrossRef]
  • Cangiano JL, Rodriguez-Sargent C, Martinez-Maldonado M. Effects of antihypertensive treatment on systolic blood pressure and renin in ex- perimental hypertension in rats. J Pharmacol Exp Ther 1979; 208: 310-3.
  • Guyton AC, Hall JE. Textbook of Medical Physiology. 10th ed. Pennsylva- nia: WB Saunders Company; 1998. p.201-208.
  • Gavras H, Brunner HR, Thurston H, Laragh JH. Reciprocation of renin de- pendency with sodium volume dependency in renal hypertension. Sci- ence 1975; 188: 1316-7. [CrossRef]
  • Freeman RH, Davis JO, Watkins BE, Stephens GA, DeForrest JM. Effects of continuous converting enzyme blockade on renovascular hypertension in the rat. Am J Physiol Renal Physiol 1979; 236: F21-4.
  • Brunner HR, Kirshman JD, Sealey JE, Laragh JH. Hypertension of renal or- igin: evidence for two different mechanisms. Science 1971; 174: 1344-6. [CrossRef]
  • Sarikonda KV, Watson RE, Opara OC, DiPette DJ. Experimental animal mod- els of hypertension. J Pharmacol Exp Ther 2009; 3: 158-65. [CrossRef]
  • Page IH. The production of persistent arterial hypertension by cello- phane perinephritis. J Am Med Ass 1939; 113: 2046. [CrossRef]
  • Roberts-Thomson P, McRitchie RJ, Chalmers JP. Experimental hypertension produces diverse changes in the regional vascular responses to endothe- lin-1 in the rabbit and the rat. J Hypertens 1994; 12: 1225-34. [CrossRef]
  • Grollman A. The effect of various hypotensive agents on the arterial blood pressure of hypertensive rats and dogs. J Pharmacol Exp Ther 1955; 174: 263-70.
  • Thiedemann KU, Holubarsch C, Medugarac I, Jacob R. Connective tissue contraction and myocardial stiffness in pressure overload hypertrophy: a combined study of morphologic, morphometric, biochemical and me- chanical parameters. Basic Res Cardio 1983; 78: 140-55. [CrossRef]
  • Gabel RA, Kivlighn SD, Siegl PK. The effect of chronically administered L-158,809 on the development of hypertension in subtotally nephrecto- mised Munich Wistar rats. FASEB J 1992; 6: 982.
  • Anderson S, Meyer TW, Rennke HG, Brenner BM. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Inves 1985; 76: 612-9. [CrossRef]
  • Navarro-Cid J, Maeso R, Perez-Vizcaino F, Cachofeiro V, Ruilope LM, Tam- argo J, et al. Effects of losartan on blood pressure, metabolic alterations, and vascular reactivity in the fructose-induced hypertensive rat. Hyper- tension 1995; 26: 1074-8. [CrossRef]
  • Kang DG, Moon MK, Sohn EJ, Lee DH, Lee HS. Effects of morin on blood pressure and metabolic changes in fructose-induced hypertensive rats. Biol Pharm Bull 2004; 27: 1779-83. [CrossRef]
  • Giani JF, Mayer MA, Mu-oz MC, Silberman EA, Höcht C, Taira CA, et al. Chronic infusion of angiotensin-(1–7) improves insulin resistance and hypertension induced by a high-fructose diet in rats. Am J Physiol Endoc M 2009; 296: 262-71.
  • Dahl LK. Possible role of salt intake in the development of essential hy- pertension. In: Pork KD, Cottier PT, eds. Essential hypertension-an inter- national symposium. Berlin: Springer-Verlag; 1960. p.53-65. [CrossRef]
  • Rathod SP, Shah N, Balaraman R. Antihypertensive effect of dietary calci- um and diltiazem, a calcium channel blocker on experimentally induced hypertensive rats. Indian J Pharmacol 1997; 29: 99-104.
  • Coleman TG, Guyton AC, Young DB, DeClue JW, Norman RA, Manning RD, et al. The role of kidney in essential hypertension. Clin Exp Pharm Physiol 1975; 2: 571-81. [CrossRef]
  • Roberts CK, Vaziri ND, Wang XQ, Barnard RJ. Enhanced NO inactivation an hypertension induced by a high-fat, refined-carbohydrate diet. Hyper- tension 2000; 36: 423-9. [CrossRef]
  • Roberts CK, Vaziri ND, Sindhu RK, Barnard RJ. A highfat, refined carbohy- drate diet affects renal NO synthase protein expression and salt sensitiv- ity. J Appl Physiol 2003; 94: 941-6. [CrossRef]
  • Hwang IS, Ho H, Hoffman BB, Reaven MG. Fructose induced insulin resis- tance and hypertension in rats. Hypertension 1987;10: 512-6. [CrossRef]
  • Reaven MG, Twersky J, Chang H. Abnormalities in carbohydrate and lipid metabolism in dahl rats. Hypertension 1991; 18: 630-5. [CrossRef]
  • Erlich Y, Rosenthal T. Contribution of nitric oxide to the beneficial effects of enalapril in the fructose-induced hyperinsulinemic rats. Hypertension 1996; 28: 754-7. [CrossRef]
  • Madar Z, Malamed EC, Zimlichman R. Acarbose reduces blood pressure in sucrose-induced hypertension in rats. J Med Sci 1997; 33: 153-9.
  • Rosen P, Ohly P, Gleiehmann H. Experimental benefit of moxonidine on glucose metabolism and insulin secretion in the fructose-fed rats. J Hy- pertension 1997; 15: 31-8. [CrossRef]
  • Selye H. Production of nephrosclerosis by overdosage with desoxycorti- costerone acetate. Can Med Assoc J 1942; 47: 515-9.
  • Terris JM, Berecek KH, Cohen EL, Stanley JC, Whitehouse WM Jr, Bohr DF. Deoxycorticosterone hypertension in the pig. Clin Sci Mol Med 1976; 3: 303-5. [CrossRef]
  • Seyle H, Bois P. The hormonal production of nephrosclerosis and periar- teritis nodosa in the primate. Br Med J 1957; 1: 183-6. [CrossRef]
  • Crofton JT, Share L. Gonadal hormones modulate deoxycorticosterone-salt hy- pertension in male and female rats. Hypertension 1997; 29: 494-9. [CrossRef]
  • Sharma PK, Vyawahare NS, Ladhha A. Preclinical screening model for hy- pertension in rodents: A review. Pharmacologyonline 2010; 3: 458-72.
  • Sahan-Firat S, Jennings BL, Yaghini FA, Song CY, Estes AM, Fang XR, et al. 2,3’,4,5’-Tetramethoxystilbene prevents deoxycorticosterone-salt-in- duced hypertension: contribution of cytochrome P-450 1B1. Am J Physi- ol Heart Circ Physiol 2010; 299: 1891-901. [CrossRef]
  • Pinto YM, Paul M, Ganten D. Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res 1998; 39: 77-88. [CrossRef]
  • Dahl LK, Heine M, Tassinari L. Effects of chronic excess salt ingestion: fur- ther demonstration that genetic factors influence the development of hypertension: evidence from experimental hypertension due to cortisone and to adrenal regeneration. J Exp Med 1965; 122: 533-45. [CrossRef]
  • Knowlton AI, Loeb EN, Stoerk HC, White JP, Heffernan JF. Induction of ar- terial hypertension in normal and adrenalectomised rats given cortisone acetate. J Exp Med 1952; 96: 187-205. [CrossRef]
  • Zhang Y, Hu L, Mori TA, Barden A, Croft KD, Whitworth JA. Arachidonic acid metabolism in glucocorticoid-induced hypertension. Clin Exp Phar- macol Physiol 2008; 35: 557-62. [CrossRef]
  • Sharma ML. Antihypertensive activity of scoparone. Indian J Pharmacol 1985; 17: 219-22.
  • Kreiger EM. Neurogenic hypertension in the rat. Cir Res 1964; 15: 511-21. [CrossRef]
  • Reis DJ, Doba N, Nathan MA. Neurogenic arterial hypertension produced by brainstem lesion. In: Onesti G, Fernandes M, Kim KE, eds. Regulation of blood pressure by the central nervous system. New York: Grune and Stratton; 1976. p. 35-51.
  • Cowley AW, Liard JF, Guyton AC. Role of baroreceptor reflexes in daily control of arterial pressure and other variables in dog. Cir Res 1973; 32: 564-78. [CrossRef]
  • Juskevich JC, Robinson DS, Whitehorn D. Effect of hypothalamic stimula- tion in spontaneously hypertensive and Wistar-Kyoto rats. Eur J Pharma- col 1978; 51: 429-39. [CrossRef]
  • Machado BH, Brody MJ. Role of the nucleus ambiguus in the regulation of heart rate and arterial pressure. Hypertension 1988; 11: 602-7. [CrossRef]
  • Hatton DC, DeMerritt J, Coste SC, McCarron DA. Stress induced hyperten- sion in the borderline hypertensive rat: stimulus duration. Physiol Behav 1993; 53: 635-41. [CrossRef]
  • Henry JP, Liu YY, Nadra WE, Qian CG, Mormede P, Lemaire V, et al. Psycho- social stress can induce chronic hypertension in normotensive strains of rats. Hypertension 1993; 21: 714-23. [CrossRef]
  • Lawler JE, Barker GF, Hubbard JW, Cox RH, Randall GW. Blood pressure and plasma renin activity responses to chronic stress in the borderline hypertensive rat. Physiol and Behav 1984; 32: 101-5. [CrossRef]
  • Okamoto K, Aoki K. Development of a strain of spontaneously hyperten- sive rats. Jpn Circ J 1963; 27: 282-93. [CrossRef]
  • Dornas WC, Silva ME. Animal models for the study of arterial hyperten- sion. J Biosci 2011; 36: 731-7. [CrossRef]
  • Zicha J, Kunes J. Ontogenetic aspects of hypertension development: analysis in the rat. Physiol Rev 1999; 79: 1227-82.
  • Trippodo NC, Frohlic ED. Similarities of genetic spontaneous hyperten- sion. Circ Res 1981; 48: 309-19. [CrossRef]
  • Smith TL, Hutchins PM. Central hemodynamics in the developmental stage of spontaneous hypertension in the unanesthetized rat. Hyperten- sion 1979; 1: 508-17. [CrossRef]
  • Engelmann GL, Vitullo JC, Gerrity RG. Morphometric analysis of cardiac hypertrophy during development, maturation, and senescence in spon- taneously hypertensive rats. Circ Res 1987; 60: 487-94. [CrossRef]
  • Smirk FH, Hall WH. Inherited hypertension in rats. Nature 1958; 182: 727-8. [CrossRef]
  • Bianchi G, Baer PG, Fox U, Dazzi L, Pagetti D, Giovannetti HM. Changes in renin, water balance and sodium balance in genetically hypertensive rats. Cir Res 1975; 36: 153-61. [CrossRef]
  • Dahl LK, Heine M, Tassinari L. Effects of chronic excess salt ingestion: evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Med 1962; 115: 1173-90. [CrossRef]
  • Zamir N, Gutman Y, Ben-Ishay D. Hypertension and brain catecholamines distribution in the Hebrew University Sabra H and N rats. Clin Sci Mol Med 1978; 55: 105-7. [CrossRef]
  • Vincent M, Bornet H, Berthezene F, Dupont J, Sassard J. Thyroid function and blood pressure in two new strains of spontaneously hypertensive and normotensive rats. Clin Sci Mol Med 1980; 54: 391-5.
  • Okamoto K, Aoki K. Establishment of stroke prone spontaneously hyper- tensive rats (SHR). Cir Res 1973; 34: 143-53.
  • Yamori Y. Predictive and preventive pathology of cardiovascular diseas- es. Acta Pathol Jpn 1989; 39: 683-705. [CrossRef]
  • Yamori Y, Horie R, Handa H, Sato M, Fukase M. Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke 1976; 7: 46-53. [CrossRef]
  • Dahl LK, Heine M, Tassinari L. Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 1962; 194: 480-2. [CrossRef]
  • Shehata MF. Important genetic checkpoints for insulin resistance in salt-sensitive (S) Dahl rats. Cardiovasc Diabetol 2008; 7: 19. [CrossRef]
  • Rapp JP, Dene H. Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension 1985; 7: 340-9. [CrossRef]
  • Campese VM. Salt sensitivity in hypertension: renal and cardiovascular implications. Hypertension 1994; 23: 531-50. [CrossRef]
  • Channa ML, Somova L, Nadar A. Facets of the metabolic syndrome in Dahl hypertensive rats. Cardiovas J S Afr 2004; 15: 61-3.
  • Sanders BJ, Lawler JE. The borderline hypertensive rat (BHR) as a model for environmentally-induced hypertension: a review and update. Neuro- sci Biobehav Rev 1992; 16: 207-17. [CrossRef]
  • Fuchs LC, Hoque AM, Clarke NL. Vascular and hemodynamic effects of behavioral stress in borderline hypertensive and Wistar-Kyoto rats. Am J Physiol Reg I 1998; 274: 375-82.
  • Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 1990; 344: 541-4. [CrossRef]
  • Itoh H, Mukoyama M, Pratt RE, Gibbons GH, Dzau VJ. Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J Clin Invest 1993; 91: 2268-74. [CrossRef]
  • Gorbea-Oppliger C, Kanagy NL, Fink GD. Losartan (DuP753) reverses angio- tensin-induced hypertension in conscious rats. FASEB J 1992; 6: 1810.
  • Krege SH, Hodgin JB, Hagaman JR, Smithies O. A non invasive computer- ized tail-cuff system for measuring blood pressure in mice. Hypertension 1995; 25: 1111-5. [CrossRef]
  • Ozkutlu U, Onat F, Aslan AN, Oktay S. Central muscarinic M2 cholinocep- tors involved in cholinergic hypertension. Eur J Pharmacol 1993; 250: 349-54. [CrossRef]
  • Smith EC, Padnos B, Cordon CJ. Peripheral versus central muscarin- ic effects on blood pressure, cardiac contractility heart rate, and body temperature in the rat monitored by radio telemetry. Pharmacol Toxicol 2001; 89: 35-42. [CrossRef]
  • Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373-6. [CrossRef]
  • Shepherd JT, Katusic ZS. Endothelium-derived vasoactive factors. Hyper- tension. 1991; 18: 76-85. [CrossRef]
  • Forstermann U, Nakan M, Tracey WR, Pollock JS. Isoforms of nitric oxide syn- thase: functions in the cardiovascular system. Eur Heart J 1993; 14: 10-15.
  • Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664-6. [CrossRef]
  • Baylis C, Mitruka B, Deng A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 1992; 90: 278-81. [CrossRef]
  • Ribeiro MO, Antunes E, de-Nucci G, Lovisolo SM, Zatz R. Chronic inhibi- tion of nitric oxide synthesis: a new model of arterial hypertension. Hy- pertension 1992; 20: 298-303. [CrossRef]
  • Li J, Deng LY, Grove K, Deschepper CF, Schiffrin EL. Comparison of effect of endothelin antagonism and angiotensin-converting enzyme inhibi- tion on blood and vascular structure in spontaneous hypertensive rats treated with N omega-nitro-L-arginine methyl ester. Hypertension 1996; 28: 188-95. [CrossRef]
  • Biancardi VC, Bergamaschi CT, Lopes OU, Campos RR. Sympathetic ac- tivation in rats with L-NAME-induced hypertension. Braz J Med Biol Res 2007; 40: 401-8. [CrossRef]
  • Bartunek J, Weinberg EO, Tajima M, Rohrbach S, Katz SE, Douglas PS, et al. Chronic N G-Nitro-LArginine methyl ester-induced hypertension novel molecular adaptation to systolic load in absence of hypertrophy. Circula- tion 2000; 101: 423-9. [CrossRef]
  • Yamakawa T, Tanaka S, Tamura K, Isoda F, Ukawa K, Yamakura Y, et al. Wistar fatty rat is obese and spontaneously hypertensive. Hypertension 1995; 25: 146-50. [CrossRef]
  • Combs CA, Katz MA, Kitzmiller JL, Brescia RJ. Experimental preeclampsia produced by chronic constriction of the lower aorta: validation with lon- gitudinal blood pressure measurements in conscious rhesus monkeys. Am J Obstet Gynecol 1993; 169: 215-23. [CrossRef]
  • Davisson RL, Hoffmann DS, Butz GM, Aldape G, Schlager G, Merrill DC, et al. Discovery of a spontaneous genetic mouse model of preeclampsia. Hypertension 2002; 39: 337-42. [CrossRef]
  • Kolatkar SB, Kulkarni SD, Joglekar GV. Quantitative evaluation of blood pres- sure responses in dogs to various vasoactive agents under the influence of commonly used anaesthetics. Indian J Pharmacol 1973; 5: 378-83.
Toplam 98 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Articles
Yazarlar

Meryem Temiz Reşitoğlu Bu kişi benim

Demet Sinem Güden Bu kişi benim

Seyhan Şahan Fırat

Yayımlanma Tarihi 13 Mayıs 2016
Gönderilme Tarihi 13 Mayıs 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 6 Sayı: 1

Kaynak Göster

APA Temiz Reşitoğlu, M., Güden, D. S., & Şahan Fırat, S. (2016). Hipertansiyon Araştırmalarında Kullanılan Deneysel Modeller. Clinical and Experimental Health Sciences, 6(1), 35-43.
AMA Temiz Reşitoğlu M, Güden DS, Şahan Fırat S. Hipertansiyon Araştırmalarında Kullanılan Deneysel Modeller. Clinical and Experimental Health Sciences. Mayıs 2016;6(1):35-43.
Chicago Temiz Reşitoğlu, Meryem, Demet Sinem Güden, ve Seyhan Şahan Fırat. “Hipertansiyon Araştırmalarında Kullanılan Deneysel Modeller”. Clinical and Experimental Health Sciences 6, sy. 1 (Mayıs 2016): 35-43.
EndNote Temiz Reşitoğlu M, Güden DS, Şahan Fırat S (01 Mayıs 2016) Hipertansiyon Araştırmalarında Kullanılan Deneysel Modeller. Clinical and Experimental Health Sciences 6 1 35–43.
IEEE M. Temiz Reşitoğlu, D. S. Güden, ve S. Şahan Fırat, “Hipertansiyon Araştırmalarında Kullanılan Deneysel Modeller”, Clinical and Experimental Health Sciences, c. 6, sy. 1, ss. 35–43, 2016.
ISNAD Temiz Reşitoğlu, Meryem vd. “Hipertansiyon Araştırmalarında Kullanılan Deneysel Modeller”. Clinical and Experimental Health Sciences 6/1 (Mayıs 2016), 35-43.
JAMA Temiz Reşitoğlu M, Güden DS, Şahan Fırat S. Hipertansiyon Araştırmalarında Kullanılan Deneysel Modeller. Clinical and Experimental Health Sciences. 2016;6:35–43.
MLA Temiz Reşitoğlu, Meryem vd. “Hipertansiyon Araştırmalarında Kullanılan Deneysel Modeller”. Clinical and Experimental Health Sciences, c. 6, sy. 1, 2016, ss. 35-43.
Vancouver Temiz Reşitoğlu M, Güden DS, Şahan Fırat S. Hipertansiyon Araştırmalarında Kullanılan Deneysel Modeller. Clinical and Experimental Health Sciences. 2016;6(1):35-43.

14639   14640