Araştırma Makalesi
BibTex RIS Kaynak Göster

Sjögren sendromuna bağlı gelişen kuru göz hastalığında meydana gelen oküler yüzey değişikliklerinin konfokal mikroskopi ile değerlendirilmesi

Yıl 2022, Cilt: 61 Sayı: 1, 80 - 86, 15.03.2022
https://doi.org/10.19161/etd.1086117

Öz

Amaç: Sjögren sendromuna bağlı olarak gelişen kuru göz hastalığında meydana gelen oküler yüzey değişikliklerini oküler yüzey testleri ve konfokal mikroskopi ile değerlendirmek.

Gereç ve Yöntem: Kliniğimizde Sjögren sendromuna bağlı kuru göz hastalığı ile takip edilen 25 hastanın ve 25 sağlıklı kontrol grubunun verileri prospektif olarak değerlendirildi. Tüm hastalara genel sistemik hastalık sorgusu ile birlikte tam oftalmik muayene yapıldı. Oküler yüzeyi değerlendirmek için çalışmaya katılan bireylerde oküler yüzey hastalıkları indeksi, Schirmer 1 testi, gözyaşı kırılma zamanı, korneal flöresein boyanma, strip meniskometri testi ve konfokal mikroskopi sonuçları değerlendirildi.


Bulgular: Sjögren sendromlu olgularda Schirmer 1 testi 2,41,1 mm, gözyaşı kırılma zamanı 3,10,9 saniye, korneal flöresein boyanma skoru 4,12,2, strip meniskometri skoru 1,80,8 mm, oküler yüzey hastalıkları indeksi skoru 22,111,6, dendritik hücre yoğunluğu 3811,3 hücre/mm2 ve subbazal sinir yoğunluğu 950375 μm/mm2 olarak değerlendirilmiştir. Sağlıklı kontrol grubunda ise Schirmer 1 testi 15,16,2 mm, gözyaşı kırılma zamanı 12,23,4 saniye, korneal flöresein boyanma skoru 2,2±1,8, strip meniskometri skoru 5,72,1 mm, oküler yüzey hastalıkları indeksi skoru 4,32,5, dendritik hücre yoğunluğu 8,32,7 hücre/mm2 ve subbazal sinir yoğunluğu 1077320 μm/mm2 olarak değerlendirildi. Sjögren sendromlu olgularda dendritik hücre yoğunluğu kontrol grubuna göre anlamlı olarak yüksek, subbazal sinir yoğunluğu anlamlı derecede düşük olarak değerlendirildi (p<0,001).


Sonuç: Lazer tarayıcı in vivo konfokal mikroskopi, Sjögren sendromu olan hastalarda kornea hücreleri morfolojisi, inflamatuar hücre yoğunluğu ve sinir lifi yoğunluğu gibi yapıların değerlendirilmesi için yararlı bir yöntemdir. Bu nedenle oküler yüzey değerlendirmesi ile birlikte konfokal mikroskopi sonuçlarının detaylı analiz edilmesi hastaların tanı ve tedavisinde yol gösterici olmaktadır

Kaynakça

  • Takagi Y, Nakamura H, Origuchi T, Miyashita T, Kawakami A, Sumi M, Nakamura T. IgG4-related Mikulicz's disease: ultrasonography of the salivary and lacrimal glands for monitoring the efficacy of corticosteroid therapy. Clin Exp Rheumatol. 2013; 31 (5): 773-5.
  • Jonsson R, Brokstad KA, Jonsson MV, Delaleu N, Skarstein K. Current concepts on Sjögren’s syndrome - classification criteria and biomarkers. Eur J Oral Sci. 2018; 1 26: 37–48.
  • Mavragani CP, Moutsopoulos HM. The geoepidemiology of Sjögren's syndrome. Autoimmun Rev. 2010; 9 (5): A305-10.
  • Mavragani CP, Moutsopoulos HM. Conventional therapy of Sjögren’s syndrome. Clinic Rev Allerg Immunol. 2007; 32: 284-91.
  • Vivino FB, Bunya VY, Massaro-Giordano G. Sjogren’s syndrome: An update on disease pathogenesis, clinical manifestations and treatment. Clin. Immunol. 2019; 203, 81–121.
  • Fox RI. Sjögren’s syndrome. Lancet. 2005; 366, 321–31.
  • Dartt DA. Neural regulation of lacrimal gland secretory processes: Relevance in dry eye diseases. Prog Retin Eye Res. 2009; 28 (3), 155–77.
  • Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II Definition and Classification Report. Ocul Surf. 2017 Jul; 15 (3): 276-83.
  • Goto E, Matsumoto Y, Kamoi M, et al. Tear evaporation rates in Sjogren syndrome and non-Sjogren dry eye patients. Am J Ophthalmol. 2007; 144: 81–85.
  • Akpek EK, Mathews P, Hahn S, ve ark. Ocular and systemic morbidity in a longitudinal cohort of Sjögren’s syndrome. Ophthalmology. 2015; 122: 56–61.
  • Büyükbaş Z, Gündüz MK, Bozkurt B, Zengin N. Bilgisayar Kullanıcılarında Görülen Oküler Yüzey Değişikliklerinin Değerlendirilmesi. Turk J Ophthalmol. 2012; 42; 190-6.
  • Toda I, Tsubota K. Practical double vital staining for ocular surface evaluation. Cornea. 1993; 12: 366–7.
  • Oliveira-Soto L, Efron N. Morphology of corneal nerves using confocal microscopy. Cornea. 2001; 20: 374–84.
  • Kojima T, Matsumoto Y, Dogru M, Tsubota K. The application of in vivo laser scanning confocal microscopy as a tool of conjunctival in vivo cytology in the diagnosis of dry eye ocular surface disease. Mol Vis. 2010 Nov 19; 16: 2457-64.
  • Lee OL, Tepelus TC, Huang J et al. Evaluation of the corneal epithelium in non-Sjögren's and Sjögren's dry eyes: an in vivo confocal microscopy study using HRT III RCM. BMC Ophthalmol. 2018 Dec 4; 18 (1): 309.
  • Chauhan SK, El Annan J, Ecoiffier T, et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J Immunol 2009; 182 (3): 1247–52.
  • Zheng X, Bian F, Ma P, et al. Induction of Th17 differentiation by corneal epithelial-derived cytokines. J Cell Physiol. 2010; 222 (1): 95–102.
  • Utine CA, Akpek EK. Sjögren Sendromu ve ilişkili Kuru Göz Sendromunun İmmunopatolojisi. TOD Journal. 2010; 40: 97-106.
  • Benítez del Castillo JM, Wasfy MA, Fernandez C, Garcia-Sanchez J. An in vivo confocal masked study on corneal epithelium and subbasal nerves in patients with dry eye. Invest Ophthalmol Vis Sci. 2004 Sep; 45 (9):3030-5.
  • Matsumoto Y, Ibrahim OMA, Kojima T, Dogru M, Shimazaki J, Tsubota K. Corneal In Vivo Laser-Scanning Confocal Microscopy Findings in Dry Eye Patients with Sjögren's Syndrome. Diagnostics (Basel). 2020 Jul 20;10(7):497.
  • Wakamatsu, TH, Sato, EA, Matsumoto, Y, et al. Conjunctival in vivo confocal scanning laser microscopy in patients with Sjögren’s syndrome. Investig. Ophthalmol. Vis. Sci. 2010, 51, 144–50.
  • Lin, H, Li W, Dong N, et al. Changes in corneal epithelial layer inflammatory cells in aqueous tear-deficient dry eye. Investig. Ophthalmol. Vis. Sci. 2010, 51, 122–8.
  • Kobayashi Y, Matsumoto M, Kotani M, Makino T. Possible involvement of matrix metalloproteinase-9 in Langerhans cell migration and maturation. J Immunol. 1999, 163, 5989–93.
  • Dekaris I, Zhu SN, Dana MR. TNF-alpha regulates corneal Langerhans cell migration. J Immunol. 1999, 162, 4235–9.
  • Tuominen IS, Konttinen YT, Vesaluoma MH, Moilanen JA, Helintö M, Tervo TM. Corneal innervation and morphology in primary Sjögren's syndrome. Invest Ophthalmol Vis Sci. 2003; 44 (6): 2545-9.
  • Cruzat A, Witkin D, Baniasadi N, et al. Inflammation and the nervous system: The connection in the cornea in patients with infectious keratitis. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5136–43.
  • Parlanti P, Pal-Ghosh S, Williams A, Tadvalkar G, Popratilo A, Stepp MA. Axonal debris accumulates in corneal epithelial cells after intraepithelial corneal nerves are damaged: A focused Ion Beam Scanning Electron Microscopy (FIB-SEM) study. Exp. Eye Res. 2020, 194. in press.
  • Stepp MA, Pal-Ghosh S, Downie LE, Zhang AC, Chinnery HR, Machet J, Girolamo ND. Corneal epithelial “Neuromas”: A case of mistaken identity? Cornea 2020, 39, 930–4.
  • Xu, KP, Yagi Y, Tsubota K. Decrease in corneal sensitivity and change in tear function in dry eye. Cornea 1996, 15, 235–9.

Evaluation of ocular surface changes in dry eye disease due to Sjögren's syndrome by confocal microscopy

Yıl 2022, Cilt: 61 Sayı: 1, 80 - 86, 15.03.2022
https://doi.org/10.19161/etd.1086117

Öz

Aim: To evaluate the ocular surface alterations in dry eye disease related to Sjögren's syndrome.

Materials and Methods: The data of 25 patients followed up in our clinic with dry eye disease due to Sjögren's syndrome and 25 healthy control groups were evaluated prospectively. In order to evaluate the ocular surface, the ocular surface diseases index, Schirmer 1 test, tear film break-up time, corneal fluorescein staining, strip meniscometry test and confocal microscopy results were evaluated.

Results: In patients with Sjögren's syndrome, Schirmer 1 test was 2.41.1 mm, tear film break-up time was 3.10.9 seconds, corneal fluorescein staining score was 4.12.2, strip meniscometry score was 1.80.8 mm, ocular surface diseases index score was 22.111.6, dendritic cell density 3811.3 cells/mm2 and subbasal nerve density 950375 μm/mm2
In the healthy control group, Schirmer 1 test was 15.16.2 mm, tear film break-up time was 12.23.4 seconds, corneal fluorescein staining score was 2.2±1.8, strip meniscometry score was 5.72.1 mm, ocular surface diseases index score was 4.32.5, dendritic cell density was 8.32.7 cells/mm2 and subbasal nerve density was evaluated as 1077320 μm/mm2. Dendritic cell density was found to be significantly higher and subbasal nerve density was found to be significantly lower in patients with Sjögren's syndrome compared to the control group (p<0.001).

Conclusion: Laser scanning in vivo confocal microscopy is a useful method for evaluating structures such as corneal cell morphology, inflammatory cell density, and nerve fiber density in patients with Sjögren's syndrome. For this reason, detailed analysis of confocal microscope results together with ocular surface evaluation guides the diagnosis and treatment of patients.

Kaynakça

  • Takagi Y, Nakamura H, Origuchi T, Miyashita T, Kawakami A, Sumi M, Nakamura T. IgG4-related Mikulicz's disease: ultrasonography of the salivary and lacrimal glands for monitoring the efficacy of corticosteroid therapy. Clin Exp Rheumatol. 2013; 31 (5): 773-5.
  • Jonsson R, Brokstad KA, Jonsson MV, Delaleu N, Skarstein K. Current concepts on Sjögren’s syndrome - classification criteria and biomarkers. Eur J Oral Sci. 2018; 1 26: 37–48.
  • Mavragani CP, Moutsopoulos HM. The geoepidemiology of Sjögren's syndrome. Autoimmun Rev. 2010; 9 (5): A305-10.
  • Mavragani CP, Moutsopoulos HM. Conventional therapy of Sjögren’s syndrome. Clinic Rev Allerg Immunol. 2007; 32: 284-91.
  • Vivino FB, Bunya VY, Massaro-Giordano G. Sjogren’s syndrome: An update on disease pathogenesis, clinical manifestations and treatment. Clin. Immunol. 2019; 203, 81–121.
  • Fox RI. Sjögren’s syndrome. Lancet. 2005; 366, 321–31.
  • Dartt DA. Neural regulation of lacrimal gland secretory processes: Relevance in dry eye diseases. Prog Retin Eye Res. 2009; 28 (3), 155–77.
  • Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II Definition and Classification Report. Ocul Surf. 2017 Jul; 15 (3): 276-83.
  • Goto E, Matsumoto Y, Kamoi M, et al. Tear evaporation rates in Sjogren syndrome and non-Sjogren dry eye patients. Am J Ophthalmol. 2007; 144: 81–85.
  • Akpek EK, Mathews P, Hahn S, ve ark. Ocular and systemic morbidity in a longitudinal cohort of Sjögren’s syndrome. Ophthalmology. 2015; 122: 56–61.
  • Büyükbaş Z, Gündüz MK, Bozkurt B, Zengin N. Bilgisayar Kullanıcılarında Görülen Oküler Yüzey Değişikliklerinin Değerlendirilmesi. Turk J Ophthalmol. 2012; 42; 190-6.
  • Toda I, Tsubota K. Practical double vital staining for ocular surface evaluation. Cornea. 1993; 12: 366–7.
  • Oliveira-Soto L, Efron N. Morphology of corneal nerves using confocal microscopy. Cornea. 2001; 20: 374–84.
  • Kojima T, Matsumoto Y, Dogru M, Tsubota K. The application of in vivo laser scanning confocal microscopy as a tool of conjunctival in vivo cytology in the diagnosis of dry eye ocular surface disease. Mol Vis. 2010 Nov 19; 16: 2457-64.
  • Lee OL, Tepelus TC, Huang J et al. Evaluation of the corneal epithelium in non-Sjögren's and Sjögren's dry eyes: an in vivo confocal microscopy study using HRT III RCM. BMC Ophthalmol. 2018 Dec 4; 18 (1): 309.
  • Chauhan SK, El Annan J, Ecoiffier T, et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J Immunol 2009; 182 (3): 1247–52.
  • Zheng X, Bian F, Ma P, et al. Induction of Th17 differentiation by corneal epithelial-derived cytokines. J Cell Physiol. 2010; 222 (1): 95–102.
  • Utine CA, Akpek EK. Sjögren Sendromu ve ilişkili Kuru Göz Sendromunun İmmunopatolojisi. TOD Journal. 2010; 40: 97-106.
  • Benítez del Castillo JM, Wasfy MA, Fernandez C, Garcia-Sanchez J. An in vivo confocal masked study on corneal epithelium and subbasal nerves in patients with dry eye. Invest Ophthalmol Vis Sci. 2004 Sep; 45 (9):3030-5.
  • Matsumoto Y, Ibrahim OMA, Kojima T, Dogru M, Shimazaki J, Tsubota K. Corneal In Vivo Laser-Scanning Confocal Microscopy Findings in Dry Eye Patients with Sjögren's Syndrome. Diagnostics (Basel). 2020 Jul 20;10(7):497.
  • Wakamatsu, TH, Sato, EA, Matsumoto, Y, et al. Conjunctival in vivo confocal scanning laser microscopy in patients with Sjögren’s syndrome. Investig. Ophthalmol. Vis. Sci. 2010, 51, 144–50.
  • Lin, H, Li W, Dong N, et al. Changes in corneal epithelial layer inflammatory cells in aqueous tear-deficient dry eye. Investig. Ophthalmol. Vis. Sci. 2010, 51, 122–8.
  • Kobayashi Y, Matsumoto M, Kotani M, Makino T. Possible involvement of matrix metalloproteinase-9 in Langerhans cell migration and maturation. J Immunol. 1999, 163, 5989–93.
  • Dekaris I, Zhu SN, Dana MR. TNF-alpha regulates corneal Langerhans cell migration. J Immunol. 1999, 162, 4235–9.
  • Tuominen IS, Konttinen YT, Vesaluoma MH, Moilanen JA, Helintö M, Tervo TM. Corneal innervation and morphology in primary Sjögren's syndrome. Invest Ophthalmol Vis Sci. 2003; 44 (6): 2545-9.
  • Cruzat A, Witkin D, Baniasadi N, et al. Inflammation and the nervous system: The connection in the cornea in patients with infectious keratitis. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5136–43.
  • Parlanti P, Pal-Ghosh S, Williams A, Tadvalkar G, Popratilo A, Stepp MA. Axonal debris accumulates in corneal epithelial cells after intraepithelial corneal nerves are damaged: A focused Ion Beam Scanning Electron Microscopy (FIB-SEM) study. Exp. Eye Res. 2020, 194. in press.
  • Stepp MA, Pal-Ghosh S, Downie LE, Zhang AC, Chinnery HR, Machet J, Girolamo ND. Corneal epithelial “Neuromas”: A case of mistaken identity? Cornea 2020, 39, 930–4.
  • Xu, KP, Yagi Y, Tsubota K. Decrease in corneal sensitivity and change in tear function in dry eye. Cornea 1996, 15, 235–9.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Cem Şimşek 0000-0001-8003-745X

Yayımlanma Tarihi 15 Mart 2022
Gönderilme Tarihi 16 Eylül 2021
Yayımlandığı Sayı Yıl 2022Cilt: 61 Sayı: 1

Kaynak Göster

Vancouver Şimşek C. Sjögren sendromuna bağlı gelişen kuru göz hastalığında meydana gelen oküler yüzey değişikliklerinin konfokal mikroskopi ile değerlendirilmesi. ETD. 2022;61(1):80-6.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519