Research Article
BibTex RIS Cite

Tip 2 diabetes mellitus hastalarında hipergliseminin kardiyak repolarizasyon parametrelerine akut etkileri

Year 2020, , 47 - 54, 13.03.2020
https://doi.org/10.19161/etd.698693

Abstract

Amaç: Ani kardiyak ölüm tip 2 Diabetes Mellitus (DM) hastalarında daha sık görülmektedir. Aritmi riskinin belirlenmesi için elektrokardiografide (EKG) repolarizasyonu gösteren QT intervali ve T dalgasının tepesinden sonuna kadar olan süreyi tanımlayan “T wave peak to end time” (Tpe) intervali yararlı olabilmektedir. Bu parametrelerin tip 2 DM hastalarında genel popülasyona göre değişimi fazla çalışılmamıştır. Hastaların hipergilisemik ve normoglisemik dönemlerinde bu parametreleri içeren karşılaştırma ise daha önce yapılmamıştır.
Çalışmanın amacı tip 2 DM hastalarında aritmik riskin göstergesi olabilecek QT ve Tpe parametrelerin sağlıklı kontrol grubuyla karşılaştırılması ve hastaların hiperglisemik ve normoglisemik dönemlerinde bu parametrelerdeki değişimin gösterilmesidir.

Gereç ve Yöntem: İnsülin infüzyonu başlanan 30 tip 2 DM hastası ile benzer yaş ve cinsiyette 30 sağlıklı birey çalışmaya alınmıştır. DM hastaların insülin infüzyonu öncesi ve sonrası EKG‟leri çekilmiş, QT, Tpe ve kalp hızları ölçülüp kalp hızına göre düzeltilmiş QT (QTc), sırasıyla kalp hızı ve QTc ye göre düzeltilmiş, Tpec ve TpeQTc değerleri hesaplanıp hem kendi aralarında hem de sağlıklı kontrol grubunun ölçümleri ile karşılaştırılmıştır.

Bulgular: Hastaların ortalama yaşı 54,2 yıl ve %53,3‟ü kadındı. Hasta grubunda hiperglisemik ve normoglisemik dönemde kontrol grubuna göre kalp hızı daha yüksek, Tpec ve QTc süreleri istatistiksel olarak daha uzundu. Hiperglisemik dönem ile normoglisemik dönem kendi aralarında karşılaştırldığında QTc, Tpe, Tpec, TpeQTc parametrelerinin hepsi hiperglisemik dönemde daha uzun bulundu. (Sırasıyla QTc:45331‟e karşı 43433 p=0,003, Tpe:95,211,9‟a karşı 82,311,8 p<0,001, Tpec:112,518,1‟e karşı 96,416,1 p<0,001, TpeQTc:0,2100,023‟e karşı 0,1900,02 p<0,001)

Sonuç: Tip 2 DM hastalarında QTc, Tpec parametreleri sağlıklı kişilere göre uzunken hiperglisemik dönemde bu parametreler normoglisemik döneme göre daha da uzundur. Bu nedenle DM hastaların aritmik riskleri hiperglisemik dönemde daha da yüksek olabilir.

References

  • Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia. 2001; 44 (Suppl 2): 14-21.
  • Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013; 93 (1): 137-88.
  • El-Menyar AA. Dysrhythmia and electrocardiographic changes in diabetes mellitus: pathophysiology and impact on the incidence of sudden cardiac death. J Cardiovasc Med (Hagerstown). 2006; 7 (8): 580-5.
  • Balkau B, Jouven X, Ducimetiere P, Eschwege E. Diabetes as a risk factor for sudden death. Lancet. 1999; 354 (9194): 1968-9.
  • Grisanti LA. Diabetes and Arrhythmias: Pathophysiology, Mechanisms and Therapeutic Outcomes. Frontiers in physiology. 2018; 9: 1669.
  • Panikkath R, Reinier K, Uy-Evanado A et al. Prolonged Tpeak-to-tend interval on the resting ECG is associated with increased risk of sudden cardiac death. Circ Arrhythm Electrophysiol. 2011; 4 (4): 441-7.
  • Aro AL, Reinier K, Rusinaru C et al. Electrical risk score beyond the left ventricular ejection fraction: prediction of sudden cardiac death in the Oregon Sudden Unexpected Death Study and the Atherosclerosis Risk in Communities Study. Eur Heart J. 2017; 38 (40): 3017-25.
  • Morin DP, Saad MN, Shams OF et al. Relationships between the T-peak to T-end interval, ventricular tachyarrhythmia, and death in left ventricular systolic dysfunction. Europace. 2012; 14 (8): 1172-9.
  • Kittnar O. Electrocardiographic changes in diabetes mellitus. Physiol Res. 2015;64 Suppl 5: S559-66.
  • Zdarska D, Peliskova P, Charvat J et al. ECG body surface mapping (BSM) in type 1 diabetic patients. Physiol Res. 2007; 56 (4): 403-10.
  • Palova S, Szabo K, Charvat J, Slavicek J et al. ECG body surface mapping changes in type 1 diabetic patients with and without autonomic neuropathy. Physiol Res. 2010; 59 (2): 203-9.
  • Kuzu F. The effect of type 2 diabetes on electrocardiographic markers of significant cardiac events. Pakistan journal of medical sciences. 2018;34(3):626-32.
  • Krahulec B, Mikes Z, Balazovjech I. The effect of cardiovascular autonomic neuropathy on resting ECG in type 1 diabetic patients. Bratisl Lek Listy. 2002;103(2):54-8.
  • Antzelevitch C, Sicouri S, Di Diego JM et al. Does Tpeak-Tend provide an index of transmural dispersion of repolarization? Heart Rhythm. 2007; 4 (8): 1114-6; author reply 6-9.
  • Chua KC, Rusinaru C, Reinier K et al. Tpeak-to-Tend interval corrected for heart rate: A more precise measure of increased sudden death risk? Heart Rhythm. 2016; 13 (11): 2181-5.
  • Creager MA, Luscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation. 2003; 108 (12): 1527-32.
  • Dimitropoulos G, Tahrani AA, Stevens MJ. Cardiac autonomic neuropathy in patients with diabetes mellitus. World journal of diabetes. 2014; 5 (1): 17-39.
  • Stevens MJ, Raffel DM, Allman KC et al. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation. 1998; 98 (10): 961-8.
  • Adebayo RA, Ikwu AN, Balogun MO et al. Evaluation of the indications and arrhythmic patterns of 24 hour Holter electrocardiography among hypertensive and diabetic patients seen at OAUTHC, Ile-Ife Nigeria. Diabetes Metab Syndr Obes. 2014; 7: 565-70.
  • Breidthardt T, Christ M, Matti M et al. QRS and QTc interval prolongation in the prediction of long-term mortality of patients with acute destabilised heart failure. Heart. 2007; 93 (9): 1093-7.
  • Brooksby P, Batin PD, Nolan J et al. The relationship between QT intervals and mortality in ambulant patients with chronic heart failure. The United Kingdom Heart Failure Evaluation and Assessment of Risk Trial (UKHEART). European Heart Journal. 1999; 20 (18): 1335-41.
  • Seegers J, Conen D, Jung K et al. Sex difference in appropriate shocks but not mortality during long-term follow-up in patients with implantable cardioverter-defibrillators. Europace. 2016; 18 (8): 1194-202.
  • Gupta P, Patel C, Patel H et al. T(p-e)/QT ratio as an index of arrhythmogenesis. J Electrocardiol. 2008; 41 (6): 567-74.
  • Liu T, Brown BS, Wu Y, Antzelevitch C, Kowey PR, Yan GX. Blinded validation of the isolated arterially perfused rabbit ventricular wedge in preclinical assessment of drug-induced proarrhythmias. Heart Rhythm. 2006; 3 (8): 948-56.
  • Antzelevitch C. Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. Am J Physiol Heart Circ Physiol. 2007; 293 (4): H2024-38.
  • Shimizu M, Ino H, Okeie K et al. T-peak to T-end interval may be a better predictor of high-risk patients with hypertrophic cardiomyopathy associated with a cardiac troponin I mutation than QT dispersion. Clin Cardiol. 2002; 25 (7): 335-9.
  • Marfella R, Nappo F, De Angelis L, Siniscalchi M, Rossi F, Giugliano D. The effect of acute hyperglycaemia on QTc duration in healthy man. Diabetologia. 2000; 43 (5): 571-5.
  • Tokatli A, Kiliçaslan F, Alis M, Yiginer O, Uzun M. Prolonged Tp-e Interval, Tp-e/QT Ratio and Tp-e/QTc Ratio in Patients with Type 2 Diabetes Mellitus. Endocrinology and metabolism (Seoul, Korea). 2016; 31 (1): 105- 12.
  • Ewing DJ, Neilson JM. QT interval length and diabetic autonomic neuropathy. Diabet Med. 1990; 7 (1): 23-6.
  • Koivikko ML, Kentta T, Salmela PI, Huikuri HV, Perkiomaki JS. Changes in cardiac repolarisation during spontaneous nocturnal hypoglycaemia in subjects with type 1 diabetes: a preliminary report. Acta Diabetol. 2017; 54 (3): 251-6.

Acute effects of hyperglisemia on cardiac repolarisation parameters in patients with type 2 diabetes mellitus

Year 2020, , 47 - 54, 13.03.2020
https://doi.org/10.19161/etd.698693

Abstract

Aim: Sudden cardiac death is more common in patients with type 2 diabetes mellitus (DM). Repolarization parameters on electrocardiography (ECG) including the QT and Tpe interval may be useful for determining the arrhythmic risk. Comparison of these parameters in patients with type 2 DM and healthy individuals has not been studied much. Also, the difference between hyper and normoglycemic periods has not been evaluated before.The aim of this study was to compare the QT and Tpe in type 2 DM patients with control group and to show the differences in the hyper and normoglycemic periods.

Materials and Methods: Thirty type 2 DM patients needed insulin infusion and 30 healthy individuals of similar age and sex were included in the study. ECGs performed before and after ınsulin infusion. QT, Tpe and heart rates were measured, and QT corrected for heart rate (QTc), Tpe corrected for heart rate (Tpec) and QTc (TpeQTc) values were calculated. Results of the hyper and normoglycemic status and control group were compared.

Results: The mean age of the patients was 54.2 years and 53.3% of them were female. Heart rate was higher and Tpec and QTc periods were statistically longer in the both hyper and normoglycemic period compared to the control group. QTc, Tpe, Tpec, TpeQTc parameters were longer in hyperglycemic period than normoglycemic period (QTc:45331 to 43433 p=0.003, Tpe:95.211.9 to 82.311.8 p<0.001, Tpec:112.518.1 to 96.416.1 p <0.001, TpeQTc:0.2100.023 to 0.1900.02 p<0.001).

Conclusion: QTc and Tpec parameters were longer in patients with type 2 DM than in healthy subjects, whereas these parameters were longer in hyperglycemic period than in normoglycemic period. Therefore, arrhythmic risks of DM patients may be even higher in the hyperglycemic period.


References

  • Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia. 2001; 44 (Suppl 2): 14-21.
  • Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013; 93 (1): 137-88.
  • El-Menyar AA. Dysrhythmia and electrocardiographic changes in diabetes mellitus: pathophysiology and impact on the incidence of sudden cardiac death. J Cardiovasc Med (Hagerstown). 2006; 7 (8): 580-5.
  • Balkau B, Jouven X, Ducimetiere P, Eschwege E. Diabetes as a risk factor for sudden death. Lancet. 1999; 354 (9194): 1968-9.
  • Grisanti LA. Diabetes and Arrhythmias: Pathophysiology, Mechanisms and Therapeutic Outcomes. Frontiers in physiology. 2018; 9: 1669.
  • Panikkath R, Reinier K, Uy-Evanado A et al. Prolonged Tpeak-to-tend interval on the resting ECG is associated with increased risk of sudden cardiac death. Circ Arrhythm Electrophysiol. 2011; 4 (4): 441-7.
  • Aro AL, Reinier K, Rusinaru C et al. Electrical risk score beyond the left ventricular ejection fraction: prediction of sudden cardiac death in the Oregon Sudden Unexpected Death Study and the Atherosclerosis Risk in Communities Study. Eur Heart J. 2017; 38 (40): 3017-25.
  • Morin DP, Saad MN, Shams OF et al. Relationships between the T-peak to T-end interval, ventricular tachyarrhythmia, and death in left ventricular systolic dysfunction. Europace. 2012; 14 (8): 1172-9.
  • Kittnar O. Electrocardiographic changes in diabetes mellitus. Physiol Res. 2015;64 Suppl 5: S559-66.
  • Zdarska D, Peliskova P, Charvat J et al. ECG body surface mapping (BSM) in type 1 diabetic patients. Physiol Res. 2007; 56 (4): 403-10.
  • Palova S, Szabo K, Charvat J, Slavicek J et al. ECG body surface mapping changes in type 1 diabetic patients with and without autonomic neuropathy. Physiol Res. 2010; 59 (2): 203-9.
  • Kuzu F. The effect of type 2 diabetes on electrocardiographic markers of significant cardiac events. Pakistan journal of medical sciences. 2018;34(3):626-32.
  • Krahulec B, Mikes Z, Balazovjech I. The effect of cardiovascular autonomic neuropathy on resting ECG in type 1 diabetic patients. Bratisl Lek Listy. 2002;103(2):54-8.
  • Antzelevitch C, Sicouri S, Di Diego JM et al. Does Tpeak-Tend provide an index of transmural dispersion of repolarization? Heart Rhythm. 2007; 4 (8): 1114-6; author reply 6-9.
  • Chua KC, Rusinaru C, Reinier K et al. Tpeak-to-Tend interval corrected for heart rate: A more precise measure of increased sudden death risk? Heart Rhythm. 2016; 13 (11): 2181-5.
  • Creager MA, Luscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation. 2003; 108 (12): 1527-32.
  • Dimitropoulos G, Tahrani AA, Stevens MJ. Cardiac autonomic neuropathy in patients with diabetes mellitus. World journal of diabetes. 2014; 5 (1): 17-39.
  • Stevens MJ, Raffel DM, Allman KC et al. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation. 1998; 98 (10): 961-8.
  • Adebayo RA, Ikwu AN, Balogun MO et al. Evaluation of the indications and arrhythmic patterns of 24 hour Holter electrocardiography among hypertensive and diabetic patients seen at OAUTHC, Ile-Ife Nigeria. Diabetes Metab Syndr Obes. 2014; 7: 565-70.
  • Breidthardt T, Christ M, Matti M et al. QRS and QTc interval prolongation in the prediction of long-term mortality of patients with acute destabilised heart failure. Heart. 2007; 93 (9): 1093-7.
  • Brooksby P, Batin PD, Nolan J et al. The relationship between QT intervals and mortality in ambulant patients with chronic heart failure. The United Kingdom Heart Failure Evaluation and Assessment of Risk Trial (UKHEART). European Heart Journal. 1999; 20 (18): 1335-41.
  • Seegers J, Conen D, Jung K et al. Sex difference in appropriate shocks but not mortality during long-term follow-up in patients with implantable cardioverter-defibrillators. Europace. 2016; 18 (8): 1194-202.
  • Gupta P, Patel C, Patel H et al. T(p-e)/QT ratio as an index of arrhythmogenesis. J Electrocardiol. 2008; 41 (6): 567-74.
  • Liu T, Brown BS, Wu Y, Antzelevitch C, Kowey PR, Yan GX. Blinded validation of the isolated arterially perfused rabbit ventricular wedge in preclinical assessment of drug-induced proarrhythmias. Heart Rhythm. 2006; 3 (8): 948-56.
  • Antzelevitch C. Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. Am J Physiol Heart Circ Physiol. 2007; 293 (4): H2024-38.
  • Shimizu M, Ino H, Okeie K et al. T-peak to T-end interval may be a better predictor of high-risk patients with hypertrophic cardiomyopathy associated with a cardiac troponin I mutation than QT dispersion. Clin Cardiol. 2002; 25 (7): 335-9.
  • Marfella R, Nappo F, De Angelis L, Siniscalchi M, Rossi F, Giugliano D. The effect of acute hyperglycaemia on QTc duration in healthy man. Diabetologia. 2000; 43 (5): 571-5.
  • Tokatli A, Kiliçaslan F, Alis M, Yiginer O, Uzun M. Prolonged Tp-e Interval, Tp-e/QT Ratio and Tp-e/QTc Ratio in Patients with Type 2 Diabetes Mellitus. Endocrinology and metabolism (Seoul, Korea). 2016; 31 (1): 105- 12.
  • Ewing DJ, Neilson JM. QT interval length and diabetic autonomic neuropathy. Diabet Med. 1990; 7 (1): 23-6.
  • Koivikko ML, Kentta T, Salmela PI, Huikuri HV, Perkiomaki JS. Changes in cardiac repolarisation during spontaneous nocturnal hypoglycaemia in subjects with type 1 diabetes: a preliminary report. Acta Diabetol. 2017; 54 (3): 251-6.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Research Articles
Authors

Evrim Simsek 0000-0003-3183-8060

Publication Date March 13, 2020
Submission Date October 15, 2019
Published in Issue Year 2020

Cite

Vancouver Simsek E. Tip 2 diabetes mellitus hastalarında hipergliseminin kardiyak repolarizasyon parametrelerine akut etkileri. ETD. 2020;59(1):47-54.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519