Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of Glycyrrhiza glabra extracts on inhibiton of 3Clpro

Yıl 2024, , 271 - 281, 10.06.2024
https://doi.org/10.19161/etd.1358629

Öz

The Sars-CoV-2 virus causes the COVID-19 disease, which is characterized by high mortality rate and symptoms such as severe acute respiratory failure. However, it has been proven that the 3-chymotrypsin-like protease (3Clpro) enzyme, which plays a key role in the replication of the Sars-CoV-2 virus, can be inhibited by certain natural compounds with a flavonoid structure. Flavonoids interact with the active site of the enzyme, resulting in enzyme inhibition. In this project, the aim was to determine the inhibitory concentrations of flavonoid molecules on 3Clpro and obtain the most effective extracts of licorice root (Glycyrrhiza Glabra L.), which is known to contain high levels of these molecules. The goal of our project is to investigate the effects of extracts obtained from licorice root using different extraction methods on the inhibition of the 3Clpro enzyme and their potential role in the treatment of Sars-CoV-2 virus infection. In our study, the phenolic content of these natural products was determined for the first time using LC MS/MS, and the inhibitory effect of these natural product extracts on the 3Clpro enzyme was also studied for the first time. When licorice root extracts were evaluated in terms of antioxidant parameters, the highest TEAC, FRAP, and DPPH levels were observed particularly in ethanol extracts. The extracts that showed the highest inhibition effect for the 3-CLpro enzyme of licorice root were respectively obtained by soaking at 80°C for 6 hours, soaking in an ultrasound bath for 20 minutes, soaking in water at 40°C for 24 hours, soaking in 60% ethanol, and soaking in 80% ethanol. The most studied bioactive compounds of licorice root in the literature are glycyrrhizin, glycyrrhetinic acid, isoliquiritin, and isoflavones. However, in this study, the phenolic acid and flavonoid content, which are not widely covered in the literature, were also examined. Among the compounds studied in licorice root, the most abundant compounds were found to be apigenin, pelargonin, cyanidin, maleic acid, ethyl ferulate, and chlorogenic acid

Proje Numarası

22077

Kaynakça

  • Guan W jie, Ni Z yi, Hu Y, Liang W hua, Ou C quan, He J xing, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine. 2020 Apr 30;382(18):1708–20.
  • Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, et al. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. Phytomedicine. 2022 Apr 1;98:153930.
  • Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021 Mar 1;19(3):141–54.
  • Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020 Jun 1;46(6):1099–102.
  • Aanouz I, Belhassan A, El-Khatabi K, Lakhlifi T, El-ldrissi M, Bouachrine M. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J Biomol Struct Dyn. 2021;39(8):2971–9.
  • Omer SE, Ibrahim TM, Krar OA, Ali AM, Makki AA, Ibraheem W, et al. Drug repurposing for SARS-CoV-2 main protease: Molecular docking and molecular dynamics investigations. Biochem Biophys Rep. 2022 Mar 1;29.
  • dos Santos CN, Menezes R, Stewart D. Polyphenols as New Leads in Drug Discovery: Biological Activity and Mechanisms. Curr Pharm Des. 2018 Sep 26;24(19):2041–2.
  • Ali S, Alam M, Khatoon F, Fatima U, Elasbali AM, Adnan M, et al. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomedicine & Pharmacotherapy. 2022 Mar 1;147:112658.
  • Islam MT, Sarkar C, El-Kersh DM, Jamaddar S, Uddin SJ, Shilpi JA, et al. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytotherapy Research. 2020 Oct 1;34(10):2471–92.
  • Ganta KK, Mandal A, Debnath S, Hazra B, Chaubey B. Anti-HCV Activity from Semi-purified Methanolic Root Extracts of Valeriana wallichii. Phytotherapy Research. 2017 Mar 1;31(3):433–40.
  • Panda SK, Padhi L, Leyssen P, Liu M, Neyts J, Luyten W. Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the Similipal Biosphere Reserve, Odisha, India. Front Pharmacol. 2017 Oct 23;8(OCT).
  • Bahramsoltani R, Rahimi R. An Evaluation of Traditional Persian Medicine for the Management of SARS CoV-2. Front Pharmacol. 2020 Nov 25;11.
  • Mandal A, Jha AK, Hazra B. Plant Products as Inhibitors of Coronavirus 3CL Protease. Front Pharmacol. 2021 Mar 9;12:167.
  • Badary OA, Hamza MS, Tikamdas R. Thymoquinone: A promising natural compound with potential benefits for COVID-19 prevention and cure. Drug Des Devel Ther. 2021;15:1819–33.
  • Grienke U, Braun H, Seidel N, Kirchmair J, Richter M, Krumbholz A, et al. Computer-guided approach to access the anti-influenza activity of licorice constituents. J Nat Prod. 2014 Mar 28;77(3):563–70.
  • Rastogi S, Pandey MM, Rawat AKS. Medicinal plants of the genus Betula - Traditional uses and a phytochemical-pharmacological review. J Ethnopharmacol. 2015 Jan 15;159:62–83.
  • Hosseinzadeh H, Nassiri-Asl M. Pharmacological Effects of Glycyrrhiza spp. and Its Bioactive Constituents: Update and Review. Phytotherapy Research. 2015 Dec 1;29(12):1868–86.
  • Batiha GES, Beshbishy AM, El-Mleeh A, Abdel-Daim MM, Devkota HP. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (fabaceae). Biomolecules. 2020 Mar 1;10(3).
  • Kwon YJ, Son DH, Chung TH, Lee YJ. A Review of the Pharmacological Efficacy and Safety of Licorice Root from Corroborative Clinical Trial Findings. J Med Food. 2020 Jan 1;23(1):12–20.
  • Aldemir O, Yildirim HK, Sözmen EY. Antioxidant and anti-inflammatory effects of biotechnologically transformed propolis. J Food Process Preserv. 2018 Jun 1;42(6).
  • Yağcıoğlu P. Farklı Ekstraksiyon Metotları İle Adaçayı (salvia Officinalis L.) Bitkisinden Antioksidan Ekstraksiyonunun Optimizasyonu. 2015.
  • Sozmen AB, Canbay E, Sozmen EY, Ovez B. The effect of temperature and light intensity during cultivation of Chlorella miniata on antioxidant, anti-inflammatory potentials and phenolic compound accumulation. Biocatal Agric Biotechnol. 2018 Apr 1;14:366–74.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999 May;26(9–10):1231–7.
  • Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem. 2000;48(8):3396–402.
  • Bralley E, Greenspan P, Hargrove JL, Hartle DK. Inhibition of hyaluronidase activity by select sorghum brans. J Med Food. 2008 Jun 1;11(2):307–12.
  • Kong LD, Cai Y, Huang WW, Cheng CHK, Tan RX. Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout. J Ethnopharmacol. 2000;73(1–2):199–207.
  • Diomede L, Beeg M, Gamba A, Fumagalli O, Gobbi M, Salmona M. Can Antiviral Activity of Licorice Help Fight COVID-19 Infection? Biomolecules [Internet]. 2021 Jun 1 [cited 2022 Oct 28];11(6). Available from: /pmc/articles/PMC8227143/
  • Zhang Q hui, Huang H zhou, Qiu M, Wu Z feng, Xin Z chang, Cai X fu, et al. Traditional Uses, Pharmacological Effects, and Molecular Mechanisms of Licorice in Potential Therapy of COVID-19. Front Pharmacol. 2021;0:3249.
  • Abraham J, Florentine S. Licorice (Glycyrrhiza glabra) Extracts-Suitable Pharmacological Interventions for COVID-19? A Review. Plants 2021, Vol 10, Page 2600 [Internet]. 2021 Nov 26 [cited 2022 Oct 28];10(12):2600. Available from: https://www.mdpi.com/2223-7747/10/12/2600/htm
  • Feng Yeh C, Chih Wang K, Chai Chiang L, Shieh DE, Hong Yen M, San Chang J. Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013 Jul 9;148(2):466–73.
  • Kuo KK, Chang JS, Wang KC, Chiang LC. Water extract of Glycyrrhiza uralensis inhibited enterovirus 71 in a human foreskin fibroblast cell line. Am J Chin Med (Gard City N Y) [Internet]. 2009 [cited 2023 Nov 27];37(2):383–94. Available from: https://pubmed.ncbi.nlm.nih.gov/19507280/
  • Abraham J, Florentine S. Licorice (Glycyrrhiza glabra) Extracts-Suitable Pharmacological Interventions for COVID-19? A Review. Plants 2021, Vol 10, Page 2600 [Internet]. 2021 Nov 26 [cited 2022 Oct 28];10(12):2600. Available from: https://www.mdpi.com/2223-7747/10/12/2600/htm
  • Guo J, Shang E, Zhao J, Fan X, Duan J, Qian D, et al. Data mining and frequency analysis for licorice as a “Two-Face” herb in Chinese Formulae based on Chinese Formulae Database. Phytomedicine [Internet]. 2014 Sep 25 [cited 2022 Oct 28];21(11):1281–6. Available from: https://pubmed.ncbi.nlm.nih.gov/25172790/
  • Yang R, Yuan BC, Ma YS, Zhou S, Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm Biol [Internet]. 2017 Jan 1 [cited 2023 Nov 27];55(1):5. Available from: /pmc/articles/PMC7012004/
  • Qiao J, Hu J, Li YP, Ren GX, Xiang Y, Zang YM, et al. Effect of exogenous brassinolide on morphological characters and contents of seven chemical constituents of Glycyrrhiza uralensis. Zhongguo Zhong Yao Za Zhi. 2016 Jan 1;41(2):197–204.
  • Velvizhi S, Annapurani S. ESTIMATION OF TOTAL FLAVONOID, PHENOLIC CONTENT, AND FREE RADICAL SCAVENGING POTENTIAL OF GLYCYRRHIZA GLABRA ROOT EXTRACT. Asian Journal of Pharmaceutical and Clinical Research. 2018 Apr 1;11(4):231–5.
  • Zhang Y, Wang C, Yang F, Sun G. A strategy for qualitative and quantitative profiling of glycyrrhiza extract and discovery of potential markers by fingerprint-activity relationship modeling. Scientific Reports 2019 9:1 [Internet]. 2019 Feb 4 [cited 2023 Nov 27];9(1):1–11. Available from: https://www.nature.com/articles/s41598-019-38601-y
  • Kim HJ, Seo JY, Suh HJ, Lim SS, Kim JS. Antioxidant activities of licorice-derived prenylflavonoids. Nutr Res Pract [Internet]. 2012 Dec [cited 2023 Nov 27];6(6):491. Available from: /pmc/articles/PMC3542438/
  • Li XL, Zhou AG, Zhang L, Chen WJ. Antioxidant Status and Immune Activity of Glycyrrhizin in Allergic Rhinitis Mice. Int J Mol Sci [Internet]. 2011 [cited 2023 Nov 27];12(2):905. Available from: /pmc/articles/PMC3083680/
  • Visavadiya NP, Soni B, Dalwadi N. Evaluation of antioxidant and anti-atherogenic properties of Glycyrrhiza glabra root using in vitro models. Int J Food Sci Nutr [Internet]. 2009 [cited 2023 Nov 27];60 Suppl 2(SUPPL. 2):135–49. Available from: https://pubmed.ncbi.nlm.nih.gov/19384750/
  • Abdel Maksoud HA, Abdel Magid AD, Mostafa YM, Elharrif MG, Sorour RI, Sorour MI. Ameliorative effect of liquorice extract versus silymarin in experimentally induced chronic hepatitis: A biochemical and genetical study. Clin Nutr Exp. 2019 Feb 1;23:69–79.

Meyan Kökü Ekstraklarının 3Clpro üzerine inhibisyon etkisi

Yıl 2024, , 271 - 281, 10.06.2024
https://doi.org/10.19161/etd.1358629

Öz

Sars-CoV-2 virüsü ölüm oranı yüksek, şiddetli akut solunum yetmezliği gibi semptomlara sahip COVID-19 hastalığına neden olmaktadır. Ancak Sars-CoV-2 virüsü replikasyonunda kilit role sahip 3 kimotripsin benzeri proteaz (3Clpro) enziminin flavonoid yapıda bazı doğal bileşiklerle inhibe edilebildiği kanıtlanmıştır. Flavonoidler enzimin aktif bölgesi ile etkileşime girerek enzim inhibisyonunu sağlamaktadır. Bu projede, flavonoid moleküllerin 3Clpro inhibe edici konsantrasyonlarının belirlenerek bu molekülleri yüksek oranda içeren meyan kökünün enzim inhibisyonunda etkili en doğru ekstraklarının elde edilmesi planlandı. Projemizin amacı flavonoid moleküllerinden zengin olduğu bilinen Meyan kökü (Glycyrrhiza Glabra L.) bitkisinin farklı ekstraksiyon yöntemleri ile elde edilen ekstraktların 3Clpro enziminin inhibisyonu üzerine etkisini ve Sars-CoV-2 virüs enfeksiyonunun tedavisinde olası rolünü araştırmaktır. Çalışmamızda hem bu doğal ürünlerin fenolik içeriği LC MS/MS ile ilk kez belirlenmiş hem de bu doğal ürün ekstrelerinin 3Clpro enzimi inhibe edici etkisi ilk kez çalışılmıştır. Meyan kökü ekstreleri antioksidan parametreler yönünden değerlendirildiğinde özellikle etanol ekstreleri ile en yüksek TEAC, FRAP ve DPPH seviyelerinin elde edildiği görülmüştür. Meyan kökü bitkisinin 3-CLpro enzimi için en yüksek inhibisyon etkisi gösteren ekstreleri sırasıyla 80 oC suda 6 saat bekletme, ultrasonikasyonda 20 dakika bekletme, 40 oC suda 24 saat bekletme, %60’lık etanolde bekletme ve %80’lik etanolde bekletme şeklinde olmuştur. Meyan kökü bitkisinin literatürde en fazla çalışılan biyoaktif bileşenlerini glisirizin, glisirhetinik asit, izoliquirin ve isoflavonlar oluşturmaktadır. Bu çalışmada ise literatürde çok fazla yer almayan fenolik asit ve flavanoid içeriğine de bakılmıştır. Meyan kökü bitkisinde bu çalışmada çalışılan bileşikler içerisinde en fazla bulunan bileşikler apigenin, pelargonin, cyanidin, maleik asit, etil ferulat ve klorojenik asit olmuştur.

Destekleyen Kurum

Ege Üniversitesi Rektörlüğü BAP koordinatörlüğü

Proje Numarası

22077

Teşekkür

Projeyi destekleyen (TSG-2020-22077) Ege Üniversitesi Rektörlüğü BAP birimine ve bitki ekstrelerini sağlayan dr. Henri Phytopharma firmasına teşekkür ederiz.

Kaynakça

  • Guan W jie, Ni Z yi, Hu Y, Liang W hua, Ou C quan, He J xing, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine. 2020 Apr 30;382(18):1708–20.
  • Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, et al. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. Phytomedicine. 2022 Apr 1;98:153930.
  • Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021 Mar 1;19(3):141–54.
  • Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020 Jun 1;46(6):1099–102.
  • Aanouz I, Belhassan A, El-Khatabi K, Lakhlifi T, El-ldrissi M, Bouachrine M. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J Biomol Struct Dyn. 2021;39(8):2971–9.
  • Omer SE, Ibrahim TM, Krar OA, Ali AM, Makki AA, Ibraheem W, et al. Drug repurposing for SARS-CoV-2 main protease: Molecular docking and molecular dynamics investigations. Biochem Biophys Rep. 2022 Mar 1;29.
  • dos Santos CN, Menezes R, Stewart D. Polyphenols as New Leads in Drug Discovery: Biological Activity and Mechanisms. Curr Pharm Des. 2018 Sep 26;24(19):2041–2.
  • Ali S, Alam M, Khatoon F, Fatima U, Elasbali AM, Adnan M, et al. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomedicine & Pharmacotherapy. 2022 Mar 1;147:112658.
  • Islam MT, Sarkar C, El-Kersh DM, Jamaddar S, Uddin SJ, Shilpi JA, et al. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytotherapy Research. 2020 Oct 1;34(10):2471–92.
  • Ganta KK, Mandal A, Debnath S, Hazra B, Chaubey B. Anti-HCV Activity from Semi-purified Methanolic Root Extracts of Valeriana wallichii. Phytotherapy Research. 2017 Mar 1;31(3):433–40.
  • Panda SK, Padhi L, Leyssen P, Liu M, Neyts J, Luyten W. Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the Similipal Biosphere Reserve, Odisha, India. Front Pharmacol. 2017 Oct 23;8(OCT).
  • Bahramsoltani R, Rahimi R. An Evaluation of Traditional Persian Medicine for the Management of SARS CoV-2. Front Pharmacol. 2020 Nov 25;11.
  • Mandal A, Jha AK, Hazra B. Plant Products as Inhibitors of Coronavirus 3CL Protease. Front Pharmacol. 2021 Mar 9;12:167.
  • Badary OA, Hamza MS, Tikamdas R. Thymoquinone: A promising natural compound with potential benefits for COVID-19 prevention and cure. Drug Des Devel Ther. 2021;15:1819–33.
  • Grienke U, Braun H, Seidel N, Kirchmair J, Richter M, Krumbholz A, et al. Computer-guided approach to access the anti-influenza activity of licorice constituents. J Nat Prod. 2014 Mar 28;77(3):563–70.
  • Rastogi S, Pandey MM, Rawat AKS. Medicinal plants of the genus Betula - Traditional uses and a phytochemical-pharmacological review. J Ethnopharmacol. 2015 Jan 15;159:62–83.
  • Hosseinzadeh H, Nassiri-Asl M. Pharmacological Effects of Glycyrrhiza spp. and Its Bioactive Constituents: Update and Review. Phytotherapy Research. 2015 Dec 1;29(12):1868–86.
  • Batiha GES, Beshbishy AM, El-Mleeh A, Abdel-Daim MM, Devkota HP. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (fabaceae). Biomolecules. 2020 Mar 1;10(3).
  • Kwon YJ, Son DH, Chung TH, Lee YJ. A Review of the Pharmacological Efficacy and Safety of Licorice Root from Corroborative Clinical Trial Findings. J Med Food. 2020 Jan 1;23(1):12–20.
  • Aldemir O, Yildirim HK, Sözmen EY. Antioxidant and anti-inflammatory effects of biotechnologically transformed propolis. J Food Process Preserv. 2018 Jun 1;42(6).
  • Yağcıoğlu P. Farklı Ekstraksiyon Metotları İle Adaçayı (salvia Officinalis L.) Bitkisinden Antioksidan Ekstraksiyonunun Optimizasyonu. 2015.
  • Sozmen AB, Canbay E, Sozmen EY, Ovez B. The effect of temperature and light intensity during cultivation of Chlorella miniata on antioxidant, anti-inflammatory potentials and phenolic compound accumulation. Biocatal Agric Biotechnol. 2018 Apr 1;14:366–74.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999 May;26(9–10):1231–7.
  • Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem. 2000;48(8):3396–402.
  • Bralley E, Greenspan P, Hargrove JL, Hartle DK. Inhibition of hyaluronidase activity by select sorghum brans. J Med Food. 2008 Jun 1;11(2):307–12.
  • Kong LD, Cai Y, Huang WW, Cheng CHK, Tan RX. Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout. J Ethnopharmacol. 2000;73(1–2):199–207.
  • Diomede L, Beeg M, Gamba A, Fumagalli O, Gobbi M, Salmona M. Can Antiviral Activity of Licorice Help Fight COVID-19 Infection? Biomolecules [Internet]. 2021 Jun 1 [cited 2022 Oct 28];11(6). Available from: /pmc/articles/PMC8227143/
  • Zhang Q hui, Huang H zhou, Qiu M, Wu Z feng, Xin Z chang, Cai X fu, et al. Traditional Uses, Pharmacological Effects, and Molecular Mechanisms of Licorice in Potential Therapy of COVID-19. Front Pharmacol. 2021;0:3249.
  • Abraham J, Florentine S. Licorice (Glycyrrhiza glabra) Extracts-Suitable Pharmacological Interventions for COVID-19? A Review. Plants 2021, Vol 10, Page 2600 [Internet]. 2021 Nov 26 [cited 2022 Oct 28];10(12):2600. Available from: https://www.mdpi.com/2223-7747/10/12/2600/htm
  • Feng Yeh C, Chih Wang K, Chai Chiang L, Shieh DE, Hong Yen M, San Chang J. Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013 Jul 9;148(2):466–73.
  • Kuo KK, Chang JS, Wang KC, Chiang LC. Water extract of Glycyrrhiza uralensis inhibited enterovirus 71 in a human foreskin fibroblast cell line. Am J Chin Med (Gard City N Y) [Internet]. 2009 [cited 2023 Nov 27];37(2):383–94. Available from: https://pubmed.ncbi.nlm.nih.gov/19507280/
  • Abraham J, Florentine S. Licorice (Glycyrrhiza glabra) Extracts-Suitable Pharmacological Interventions for COVID-19? A Review. Plants 2021, Vol 10, Page 2600 [Internet]. 2021 Nov 26 [cited 2022 Oct 28];10(12):2600. Available from: https://www.mdpi.com/2223-7747/10/12/2600/htm
  • Guo J, Shang E, Zhao J, Fan X, Duan J, Qian D, et al. Data mining and frequency analysis for licorice as a “Two-Face” herb in Chinese Formulae based on Chinese Formulae Database. Phytomedicine [Internet]. 2014 Sep 25 [cited 2022 Oct 28];21(11):1281–6. Available from: https://pubmed.ncbi.nlm.nih.gov/25172790/
  • Yang R, Yuan BC, Ma YS, Zhou S, Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm Biol [Internet]. 2017 Jan 1 [cited 2023 Nov 27];55(1):5. Available from: /pmc/articles/PMC7012004/
  • Qiao J, Hu J, Li YP, Ren GX, Xiang Y, Zang YM, et al. Effect of exogenous brassinolide on morphological characters and contents of seven chemical constituents of Glycyrrhiza uralensis. Zhongguo Zhong Yao Za Zhi. 2016 Jan 1;41(2):197–204.
  • Velvizhi S, Annapurani S. ESTIMATION OF TOTAL FLAVONOID, PHENOLIC CONTENT, AND FREE RADICAL SCAVENGING POTENTIAL OF GLYCYRRHIZA GLABRA ROOT EXTRACT. Asian Journal of Pharmaceutical and Clinical Research. 2018 Apr 1;11(4):231–5.
  • Zhang Y, Wang C, Yang F, Sun G. A strategy for qualitative and quantitative profiling of glycyrrhiza extract and discovery of potential markers by fingerprint-activity relationship modeling. Scientific Reports 2019 9:1 [Internet]. 2019 Feb 4 [cited 2023 Nov 27];9(1):1–11. Available from: https://www.nature.com/articles/s41598-019-38601-y
  • Kim HJ, Seo JY, Suh HJ, Lim SS, Kim JS. Antioxidant activities of licorice-derived prenylflavonoids. Nutr Res Pract [Internet]. 2012 Dec [cited 2023 Nov 27];6(6):491. Available from: /pmc/articles/PMC3542438/
  • Li XL, Zhou AG, Zhang L, Chen WJ. Antioxidant Status and Immune Activity of Glycyrrhizin in Allergic Rhinitis Mice. Int J Mol Sci [Internet]. 2011 [cited 2023 Nov 27];12(2):905. Available from: /pmc/articles/PMC3083680/
  • Visavadiya NP, Soni B, Dalwadi N. Evaluation of antioxidant and anti-atherogenic properties of Glycyrrhiza glabra root using in vitro models. Int J Food Sci Nutr [Internet]. 2009 [cited 2023 Nov 27];60 Suppl 2(SUPPL. 2):135–49. Available from: https://pubmed.ncbi.nlm.nih.gov/19384750/
  • Abdel Maksoud HA, Abdel Magid AD, Mostafa YM, Elharrif MG, Sorour RI, Sorour MI. Ameliorative effect of liquorice extract versus silymarin in experimentally induced chronic hepatitis: A biochemical and genetical study. Clin Nutr Exp. 2019 Feb 1;23:69–79.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi Biyokimya ve Metabolomik (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Erhan Canbay 0000-0003-0948-1675

Meltem Kocamanoğlu 0000-0002-1018-6182

Cemrehan Fedacı 0000-0001-7191-5345

Öznur Çopur 0000-0003-2418-7626

Murat Ünlü 0009-0007-5798-0109

Yasemin Akçay 0000-0002-0497-9346

Eser Y. Sözmen 0000-0002-6383-6724

Proje Numarası 22077
Yayımlanma Tarihi 10 Haziran 2024
Gönderilme Tarihi 14 Eylül 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

Vancouver Canbay E, Kocamanoğlu M, Fedacı C, Çopur Ö, Ünlü M, Akçay Y, Y. Sözmen E. The effect of Glycyrrhiza glabra extracts on inhibiton of 3Clpro. ETD. 2024;63(2):271-8.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519