Araştırma Makalesi
BibTex RIS Kaynak Göster

Meme kanseri hücresi tanımlayan biyosensör

Yıl 2024, , 396 - 403, 09.09.2024
https://doi.org/10.19161/etd.1404822

Öz

Amaç: Bu çalışmada meme kanseri hücrelerini membran reseptörleri aracıyla tanımlayabilen yüksek hassasiyet ve özgüllükle çalışan hızlı bir tanı aracı oluşturmak hedeflendi. Kuvars kristal mikrodenge (QCM) sistemi hücrelerin reseptörlerine özgü ligantlarla işlevselleştirilerek etkin bir biyosensör geliştirmek amaçlandı.
Gereç ve Yöntem: Biyosensörler afinite prensibiyle çalışan biyoreseptör ve dönüştürücü bölümden oluşan hassas tanı araçlarıdır. Kuvars kristal mikrodenge sistemi kuvars kristal rezonatörünün frekansındaki minimal kütle artışlarına bağlı değişimi saptar. QCM çipi öncelikle hazırladığımız polimerik nanopartiküllerle kaplandı. Nanopartikül tabakasının üzerine transferrin, noç 4 ve her2/neu monoklonal antikoru gibi ligantlar bağlanarak yüzey işlevselleştirildi. Modifiye edilen QCM çip yüzeyinin kimyasal ve fiziksel özellikleri incelendi. İnsan meme kanseri hücreleri MDA-MB 231 ve SKBR3 ile kontrol fibroblast hücreleri L929, kültürde çoğaltılarak deneylere hazırlandı. Hücreler PBS içinde çip yüzeyinden geçirildi ve QCM sisteminde hücre tutunmasına bağlı olarak oluşan frekans değişimleri saptandı. Geliştirilen biyosensör sisteminin bağlanma kinetiği, hassasiyeti ve tekrar kullanılabilirliği belirlendi.
Bulgular: QCM çipi kaplamak için hazırlanan nanopartiküllerin çapı 73.22 nm ve polidispersitesi 0.229 olarak bulundu ve yüzeyi homojen bir şekilde kapladıkları gözlendi. Transferrin, noç 4 ve her2/neu monoklonal antikoru ile işlevselleştirilen QCM’in saptama limiti 4-10 hücre/ml olarak saptandı. Bağlanmanın Langmuir tipinde olduğu hesaplandı.
Sonuç: Geliştirilen QCM temelli biyosensör meme kanseri hücrelerini reseptörleri aracılığıyla hızlı, hassas ve seçici biçimde tanımladı. Biyosensör tekrarlı kullanımda etkinliğini korudu. Bu hızlı tanı aracının klinik uygulamalarda yer alabileceği sonucuna varıldı.

Kaynakça

  • 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA. Cancer J. Clin. 2018;68(6):394-424 .
  • 2. Weigel MT, Dowsett M. Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr Relat Cancer. 2010;17(4):R245-62.
  • 3. Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. Sensors (Basel). 2019;19(6):1279.
  • 4. Zhang Y, Yang D, Weng L, Wang L. Early lung cancer diagnosis by biosensors. Int J Mol Sci . 2013;14(8):15479-509.
  • 5. Zhu Y, Chandra P, Shim YB. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine-Au nanoparticle-aptamer bioconjugate. Anal Chem. 2013;85(2):1058-64 .
  • 6. Bakhshpour M, Özgür E, Bereli N, Denizli A. Microcontact imprinted quartz crystal microbalance nanosensor for protein C recognition. Colloids Surf B Biointerfaces. 2017;151:264-270.
  • 7. Liu LS, Wu C, Zhang S. Ultrasensitive Detection of DNA and Ramos Cell Using In Situ Selective Crystallization Based Quartz Crystal Microbalance. Anal Chem. 2017;89(7):4309-4313.
  • 8. Heydari S, Haghayegh G. Application of Nanoparticles in Quartz Crystal Microbalance Biosensors . Journal of Sensor Technology . 2014;(4)81-100 .
  • 9. Bakhshpour M, Piskin AK, Yavuz H, Denizli A. Quartz crystal microbalance biosensor for label-free MDA MB 231 cancer cell detection via notch-4 receptor. Talanta. 2019;204:840-845 .
  • 10. Zakrzewski F, de Back W, Weigert M, Wenke T, Zeugner S, Mantey R, Sperling C, Friedrich K, Roeder I, Aust D, Baretton G, Hönscheid P. Automated detection of the HER2 gene amplification status in Fluorescence in situ hybridization images for the diagnostics of cancer tissues . Sci Rep . 2019 ;9(1):8231.
  • 11. Asep B, Dani N, Rosi O, Risti R. How to Read and Interpret FTIR Spectroscope of Organic Material. 2019; (4):97-118. doi:10.17509/ijost.v4i1.15806
  • 12. Armbruster David A, Terry Pry. Limit of blank, limit of detection and limit of quantitation. The Clinical biochemist. Reviews vol. 2008: (29): 49-52.
  • 13. Shrivastava A, & Gupta VB . Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists. 2011; (2) 21-25.
  • 14. Wang J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron. 2006;21(10):1887-92.
  • 15. Tothill IE, Biosensors for cancer markers diagnosis. Seminars in Cell & Developmental Biology , 2009;20(1):55-62 .
  • 16. Daniels TR, Bernabeu E , Rodríguez JA, Patel S, Kozman M, Chiappetta DA, Holler E, Ljubimova JY , Helguera G, Penichet ML. The transferrin receptor and the targeted delivery of therapeutic agents against cancer . Biochim Biophys Acta . 2012;1820(3):291-317.
  • 17. Gu Z, Wang H, Xia J, Yang Y, Jin Z, Xu H, Shi J, De Domenico I, Tricot G, Zhan F. Decreased ferroportin promotes myeloma cell growth and osteoclast differentiatio . Cancer Res. 2015;75(11):2211-21 .
  • 18. Ohkuma M, Haraguchi N, Ishii H, Mimori K, Tanaka F, Kim HM, Shimomura M, Hirose H, Yanaga K , Mori M. Absence of CD71 transferrin receptor characterizes human gastric adenosquamous carcinoma stem cells . Ann Surg Oncol. 2012;19(4):1357-64.
  • 19. Singh M, Mugler K, Hailoo DW, Burke S, Nemesure B, Torkko K, Shroyer KR . Differential expression of transferrin receptor (TfR) in a spectrum of normal to malignant breast tissues: implications for in situ and invasive carcinoma . Appl Immunohistochem Mol Morphol . 2011;19(5):417-23 .
  • 20. Kontomanolis EN, Kalagasidou S, Pouliliou S, Anthoulaki X, Georgiou N, Papamanolis V, Fasoulakis ZN. The Notch Pathway in Breast Cancer Progression. Scientific World Journal. 2018 ;2018:2415489 .
  • 21. Hellström M, Phng LK, Gerhardt H. VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell Adh Migr . 2007;1(3):133-6 .
  • 22. Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 2010;70(2):709-18 .
  • 23. Zeng P, Sun S, Li R, Xiao ZX, Chen H . HER2 Upregulates ATF4 to Promote Cell Migration via Activation of ZEB1 and Downregulation of E-Cadherin. Int J Mol Sci. 2019;20(9):2223.
  • 24. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS, Perou CM, Ellis MJ, Nielsen TO. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst . 2009;101(10):736-50 .
  • 25. Syahir A, Usui K, Tomizaki KY, Kajikawa K, Mihara H. Label and Label-Free Detection Techniques for Protein Microarrays . Microarrays (Basel). 2015;4(2):228-44 .
  • 26. Huang XH, Pan W, Hu JG, Bai QS. The Exploration and Confirmation of the Maximum Mass Sensitivity of Quartz Crystal Microbalance. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(10):1888-1892.
  • 27. Atay S, Pişkin K, Yilmaz F, Çakir C, Yavuz H, Denizli A . Quartz crystal microbalance based biosensors for detecting highly metastatic breast cancer cells via their transferrin receptors. Anal Methods. 2016;8(1):153 161
  • 28. Yılmaz M, Bakhshpour M, Göktürk I, Pişkin AK, Denizli A. Quartz Crystal Microbalance (QCM) Based Biosensor Functionalized by HER2/neu Antibody for Breast Cancer Cell Detection. Chemosensors. 2021; 9(4):80.
  • 29. Poturnayová A, Dzubinová Ľ, Buríková M, Bízik J, Hianik T. Detection of Breast Cancer Cells Using Acoustics Aptasensor Specific to HER2 Receptors . Biosensors (Basel). 2019;9(2):72.

BREAST CANCER DETECTING BIOSENSOR

Yıl 2024, , 396 - 403, 09.09.2024
https://doi.org/10.19161/etd.1404822

Öz

Aim: This study aims to develop a rapid detection system, which is highly sensitive and selective for breast cancer cells. An efficient biosensor is aimed to be formed by functionalizing quartz crystal microbalance (QCM) system with ligands those are specific for breast cancer cell membrane receptors.
Materials and Methods: Biosensors are sensitive diagnostic devices based on affinity principle are composed of a bioreceptor and a transducer. Quartz crystal microbalance (QCM) system detects the changes in the frequency of crystal resonator created by minimal changes in the mass. The QCM chip was first coated with polymeric nanoparticles that we prepared. Its surface is functionalized by attaching ligands like transferrin, notch 4 and her2/neu monoclonal antibodies on the nanoparticle layer. The chemical and physical features of modified QCM chip surface is analyzed. The human breast cancer cells MCF 7, MDA-MB 231, SKBR3 and control fibroblast cells L929 are prepared for experiments by growing in culture. Cells suspended in PBS are passed over the QCM surface and frequency changes resulting from cell binding are recorded. The binding kinetics, affinity and reusability of the biosensor is determined.
Results: The nanoparticles for coating the QCM chip had a diameter of 73.22 nm and the polydispersity was 0.229. It is observed that they covered the surface homogeneously. The detection limit of transferrin, notch 4 and her2/neu functionalized QCM was 4-10 cells/ml.. Binding kinetics best fitted to Langmuir type binding.
Conclusion: The QCM based biosensor detected breast cancer cells through their membrane receptor rapidly with high affinity and selectivity. The biosensor retained its efficiency in repeated usage. It is concluded that this rapid detection system may find a place in clinical applications.

Kaynakça

  • 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA. Cancer J. Clin. 2018;68(6):394-424 .
  • 2. Weigel MT, Dowsett M. Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr Relat Cancer. 2010;17(4):R245-62.
  • 3. Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. Sensors (Basel). 2019;19(6):1279.
  • 4. Zhang Y, Yang D, Weng L, Wang L. Early lung cancer diagnosis by biosensors. Int J Mol Sci . 2013;14(8):15479-509.
  • 5. Zhu Y, Chandra P, Shim YB. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine-Au nanoparticle-aptamer bioconjugate. Anal Chem. 2013;85(2):1058-64 .
  • 6. Bakhshpour M, Özgür E, Bereli N, Denizli A. Microcontact imprinted quartz crystal microbalance nanosensor for protein C recognition. Colloids Surf B Biointerfaces. 2017;151:264-270.
  • 7. Liu LS, Wu C, Zhang S. Ultrasensitive Detection of DNA and Ramos Cell Using In Situ Selective Crystallization Based Quartz Crystal Microbalance. Anal Chem. 2017;89(7):4309-4313.
  • 8. Heydari S, Haghayegh G. Application of Nanoparticles in Quartz Crystal Microbalance Biosensors . Journal of Sensor Technology . 2014;(4)81-100 .
  • 9. Bakhshpour M, Piskin AK, Yavuz H, Denizli A. Quartz crystal microbalance biosensor for label-free MDA MB 231 cancer cell detection via notch-4 receptor. Talanta. 2019;204:840-845 .
  • 10. Zakrzewski F, de Back W, Weigert M, Wenke T, Zeugner S, Mantey R, Sperling C, Friedrich K, Roeder I, Aust D, Baretton G, Hönscheid P. Automated detection of the HER2 gene amplification status in Fluorescence in situ hybridization images for the diagnostics of cancer tissues . Sci Rep . 2019 ;9(1):8231.
  • 11. Asep B, Dani N, Rosi O, Risti R. How to Read and Interpret FTIR Spectroscope of Organic Material. 2019; (4):97-118. doi:10.17509/ijost.v4i1.15806
  • 12. Armbruster David A, Terry Pry. Limit of blank, limit of detection and limit of quantitation. The Clinical biochemist. Reviews vol. 2008: (29): 49-52.
  • 13. Shrivastava A, & Gupta VB . Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists. 2011; (2) 21-25.
  • 14. Wang J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron. 2006;21(10):1887-92.
  • 15. Tothill IE, Biosensors for cancer markers diagnosis. Seminars in Cell & Developmental Biology , 2009;20(1):55-62 .
  • 16. Daniels TR, Bernabeu E , Rodríguez JA, Patel S, Kozman M, Chiappetta DA, Holler E, Ljubimova JY , Helguera G, Penichet ML. The transferrin receptor and the targeted delivery of therapeutic agents against cancer . Biochim Biophys Acta . 2012;1820(3):291-317.
  • 17. Gu Z, Wang H, Xia J, Yang Y, Jin Z, Xu H, Shi J, De Domenico I, Tricot G, Zhan F. Decreased ferroportin promotes myeloma cell growth and osteoclast differentiatio . Cancer Res. 2015;75(11):2211-21 .
  • 18. Ohkuma M, Haraguchi N, Ishii H, Mimori K, Tanaka F, Kim HM, Shimomura M, Hirose H, Yanaga K , Mori M. Absence of CD71 transferrin receptor characterizes human gastric adenosquamous carcinoma stem cells . Ann Surg Oncol. 2012;19(4):1357-64.
  • 19. Singh M, Mugler K, Hailoo DW, Burke S, Nemesure B, Torkko K, Shroyer KR . Differential expression of transferrin receptor (TfR) in a spectrum of normal to malignant breast tissues: implications for in situ and invasive carcinoma . Appl Immunohistochem Mol Morphol . 2011;19(5):417-23 .
  • 20. Kontomanolis EN, Kalagasidou S, Pouliliou S, Anthoulaki X, Georgiou N, Papamanolis V, Fasoulakis ZN. The Notch Pathway in Breast Cancer Progression. Scientific World Journal. 2018 ;2018:2415489 .
  • 21. Hellström M, Phng LK, Gerhardt H. VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell Adh Migr . 2007;1(3):133-6 .
  • 22. Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 2010;70(2):709-18 .
  • 23. Zeng P, Sun S, Li R, Xiao ZX, Chen H . HER2 Upregulates ATF4 to Promote Cell Migration via Activation of ZEB1 and Downregulation of E-Cadherin. Int J Mol Sci. 2019;20(9):2223.
  • 24. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS, Perou CM, Ellis MJ, Nielsen TO. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst . 2009;101(10):736-50 .
  • 25. Syahir A, Usui K, Tomizaki KY, Kajikawa K, Mihara H. Label and Label-Free Detection Techniques for Protein Microarrays . Microarrays (Basel). 2015;4(2):228-44 .
  • 26. Huang XH, Pan W, Hu JG, Bai QS. The Exploration and Confirmation of the Maximum Mass Sensitivity of Quartz Crystal Microbalance. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(10):1888-1892.
  • 27. Atay S, Pişkin K, Yilmaz F, Çakir C, Yavuz H, Denizli A . Quartz crystal microbalance based biosensors for detecting highly metastatic breast cancer cells via their transferrin receptors. Anal Methods. 2016;8(1):153 161
  • 28. Yılmaz M, Bakhshpour M, Göktürk I, Pişkin AK, Denizli A. Quartz Crystal Microbalance (QCM) Based Biosensor Functionalized by HER2/neu Antibody for Breast Cancer Cell Detection. Chemosensors. 2021; 9(4):80.
  • 29. Poturnayová A, Dzubinová Ľ, Buríková M, Bízik J, Hianik T. Detection of Breast Cancer Cells Using Acoustics Aptasensor Specific to HER2 Receptors . Biosensors (Basel). 2019;9(2):72.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kanser Genetiği, Kanser Hücre Biyolojisi, Kanser Tanısı
Bölüm Araştırma Makaleleri
Yazarlar

Ayse Kevser Ozden Piskin 0000-0003-3292-8092

Yayımlanma Tarihi 9 Eylül 2024
Gönderilme Tarihi 15 Aralık 2023
Kabul Tarihi 21 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

Vancouver Ozden Piskin AK. Meme kanseri hücresi tanımlayan biyosensör. ETD. 2024;63(3):396-403.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519