Research Article
BibTex RIS Cite

Size-dependent toxicological effects comparison of Aluminum Oxide Nanoparticles (Al2O3 NPs)

Year 2024, , 603 - 610, 09.12.2024
https://doi.org/10.19161/etd.1538725

Abstract

Modification of nanomaterials with different synthesis methods can affect their biological response, as well as their use as nanotherapeutics. It is necessary to address and understand the safety issue of these particles through toxicological evaluation with an underlying mechanism of interaction. With the fast entry of aluminum-based nanoparticles into the industry, their potential exposure has also increased significantly. Aluminum oxide nanoparticles (Al2O3 NPs) are among the priority materials by international organizations. Studies have not yet elucidated the toxic response of Al2O3 NPs depending on their size range.
Therefore, this study aimed to investigate toxicological effects of Al2O3 NPs depending on size range on MCF-10 and MCF-7 cells by WST-1 test, hemolytic activity on red blood cells and irritation effects by HET-CAM test. As a result of tests, all size ranges of Al2O3 NPs didn’t show any cytotoxic effects on MCF-10 and MCF-7 cells, also none of sizes of Al2O3 NPs were caused hemolysis (<2%). It was observed that there was no irritating effect in all size ranges on HET-CAM test.
In conclusion, risk assessments in terms of characteristic features as the size of Al2O3 NPs showed that they have the potential to provide safe use in drug delivery systems and immobilization studies.

References

  • U.S. Environmental Protection Agency Nanotechnology White Paper (2005) http://www.epa.gov/osa/pdfs/EPA_nanotechnology_white_paper_external_review_draft_12-02-2005.pdf
  • Sadiq IM, Pakrashi S, Chandrasekaran N. et al. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res, 2011; 13: 3287–299.
  • Park EJ, Lee GH, Shim JH, Cho MH, Lee BS, Kim YB, Kim JH, Kim Y, Kim DW. Comparison of the toxicity of aluminum oxide nanorods with different aspect ratio. Arch Toxicol. 2015; 89(10):1771-82.
  • Oesterling E, Chopra N, Gavalas V, Arzuaga X, Lim EJ, Sultana R, Butterfield DA, Bachas L, Hennig B, Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol Lett. 2008; 30;178(3):160-6.
  • Bakan B, Gülcemal S, Akgöl S, Hoet PH, & Yavaşoğlu NÜK. Synthesis, characterization and toxicity assessment of a new polymeric nanoparticle, I-glutamic acid-gp (HEMA). Chemico-Biological Interactions, 2020; 315: 108870.
  • ASTM standard practice F 756-00: Assessment of hemolytic properties of materials,2013.
  • ICCVAM, 2006, ICCVAM Test Method Evaluation Report: In Vitro Ocular Toxicity Methods for Identifying Severe Irritants and Corrosives. NIH Publication No: 07-4517. Research Triangle Park, NC: National Institute of Environmental Health Sciences.
  • Raj S, Kumar D. Biochemical Toxicology: Heavy Metals and Nanomaterials, 2020; 90928
  • Manke A, Wang L, Rojanasakul Y, Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2023; 942916.
  • Park EJ, Lee SJ, Lee GH, Kim DW, Yoon C, Lee BS, Kim Y, Chang J, Lee K, Comparison of subchronic immunotoxicity of four different types of aluminum-based nanoparticles. J Appl Toxicol. 2018; 38(4):575-84.
  • Alarifi S, Ali D, Alkahtani S. et al. Iron Oxide Nanoparticles Induce Oxidative Stress, DNA Damage, and Caspase Activation in the Human Breast Cancer Cell Line. Biol Trace Elem Res., 2014; 159:416–24.
  • Ganesan K, Wang Y, Gao F, Liu Q, Zhang C, Li P, Zhang J, Chen J, Targeting Engineered Nanoparticles for Breast Cancer Therapy. Pharmaceutics. 2021; 3(4), 276-83.
  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci. 2008; 101(2):239-53.
  • Al-Gebory L, Mengüç MP. The effect of pH on particle agglomeration and optical properties of nanoparticle suspensions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018; 219, 46-60.
  • Choi J, Reipa V, Hitchins VM, Goering PL, Malinauskas RA. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol Sci. 2021; 123(1):133-43.
  • Demir E, Burgucu D, Turna F, Aksakal S, Kaya B. Determination of TiO2, ZrO2, and Al2O3 nanoparticles on genotoxic responses in humanperipheral blood lymphocytes and cultured embryonic kidney cells.J. Toxicol. Environ. Health 2013; 76: 990–1002.
  • Kumar V, Gill KD, Aluminium neurotoxicity: neuro-behavioural and oxidative aspects.Arch. Toxicol. 2009; 83: 965–78.
  • Kim YS, Chung YH, Seo DS, Choi HS, Lim CH, Twenty-Eight-Day Repeated Inhalation Toxicity Study of Aluminum Oxide Nanoparticles in Male Sprague-Dawley Rats. Toxicol Res. 2018; 34(4):343-54.

Alüminyum Oksit Nanopartiküllerinin (Al2O3 NP'leri) boyuta bağlı toksikolojik etkilerinin karşılaştırılması

Year 2024, , 603 - 610, 09.12.2024
https://doi.org/10.19161/etd.1538725

Abstract

Amaç: Farklı sentez yöntemleri kullanılarak nanomateryallerin modifiye edilmesi, biyolojik yanıtlarını ve nanoterapötik olarak kullanımlarını etkileyebilir. Bu parçacıkların güvenliği konusunu, altta yatan etkileşim mekanizması ile toksikolojik değerlendirme yoluyla ele almak ve anlamak gerekmektedir. Alüminyum bazlı nano parçacıkların endüstriye hızlı bir şekilde girmesiyle, potansiyel maruziyetleri de önemli ölçüde arttı. Alüminyum oksit nano parçacıkları (Al2O3 NPs) uluslararası kuruluşlar tarafından öncelikli malzemeler arasında yer almaktadır. Araştırmalarda, Al2O3 NP'lerin boyut aralığına bağlı olarak toksik yanıtı henüz ortaya konulmamıştır.

Gereç ve Yöntem: Bu nedenle bu çalışmada, Al2O3 NP'lerinin boyut aralığına bağlı olarak MCF-10 ve MCF-7 hücreleri üzerindeki toksikolojik etkilerinin WST-1 testi ile, kırmızı kan hücreleri üzerindeki hemolitik aktivitesinin ve HET-CAM testi ile tahriş etkilerinin araştırılması amaçlanmıştır.

Bulgular: Test sonuçlarında, Al2O3 NP'lerin tüm boyut aralıklarında MCF-10 ve MCF-7 hücreleri üzerinde herhangi bir sitotoksik etki göstermediği, ayrıca Al2O3 NP'ler hiçbir boyutunda hemolize neden olmamıştır (<2%). HET-CAM testinde tüm boyut aralıklarında tahriş edici bir etki olmadığı gözlemlendi.

Sonuç: Sonuç olarak, Al2O3 NP'lerinin boyut olarak karakteristik özellikleri açısından yapılan risk değerlendirmesinde, ilaç taşıma sistemlerinde ve immobilizasyon çalışmalarında güvenli kullanım sağlama potansiyeline sahip olduklarını göstermiştir.

References

  • U.S. Environmental Protection Agency Nanotechnology White Paper (2005) http://www.epa.gov/osa/pdfs/EPA_nanotechnology_white_paper_external_review_draft_12-02-2005.pdf
  • Sadiq IM, Pakrashi S, Chandrasekaran N. et al. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res, 2011; 13: 3287–299.
  • Park EJ, Lee GH, Shim JH, Cho MH, Lee BS, Kim YB, Kim JH, Kim Y, Kim DW. Comparison of the toxicity of aluminum oxide nanorods with different aspect ratio. Arch Toxicol. 2015; 89(10):1771-82.
  • Oesterling E, Chopra N, Gavalas V, Arzuaga X, Lim EJ, Sultana R, Butterfield DA, Bachas L, Hennig B, Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol Lett. 2008; 30;178(3):160-6.
  • Bakan B, Gülcemal S, Akgöl S, Hoet PH, & Yavaşoğlu NÜK. Synthesis, characterization and toxicity assessment of a new polymeric nanoparticle, I-glutamic acid-gp (HEMA). Chemico-Biological Interactions, 2020; 315: 108870.
  • ASTM standard practice F 756-00: Assessment of hemolytic properties of materials,2013.
  • ICCVAM, 2006, ICCVAM Test Method Evaluation Report: In Vitro Ocular Toxicity Methods for Identifying Severe Irritants and Corrosives. NIH Publication No: 07-4517. Research Triangle Park, NC: National Institute of Environmental Health Sciences.
  • Raj S, Kumar D. Biochemical Toxicology: Heavy Metals and Nanomaterials, 2020; 90928
  • Manke A, Wang L, Rojanasakul Y, Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2023; 942916.
  • Park EJ, Lee SJ, Lee GH, Kim DW, Yoon C, Lee BS, Kim Y, Chang J, Lee K, Comparison of subchronic immunotoxicity of four different types of aluminum-based nanoparticles. J Appl Toxicol. 2018; 38(4):575-84.
  • Alarifi S, Ali D, Alkahtani S. et al. Iron Oxide Nanoparticles Induce Oxidative Stress, DNA Damage, and Caspase Activation in the Human Breast Cancer Cell Line. Biol Trace Elem Res., 2014; 159:416–24.
  • Ganesan K, Wang Y, Gao F, Liu Q, Zhang C, Li P, Zhang J, Chen J, Targeting Engineered Nanoparticles for Breast Cancer Therapy. Pharmaceutics. 2021; 3(4), 276-83.
  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci. 2008; 101(2):239-53.
  • Al-Gebory L, Mengüç MP. The effect of pH on particle agglomeration and optical properties of nanoparticle suspensions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018; 219, 46-60.
  • Choi J, Reipa V, Hitchins VM, Goering PL, Malinauskas RA. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol Sci. 2021; 123(1):133-43.
  • Demir E, Burgucu D, Turna F, Aksakal S, Kaya B. Determination of TiO2, ZrO2, and Al2O3 nanoparticles on genotoxic responses in humanperipheral blood lymphocytes and cultured embryonic kidney cells.J. Toxicol. Environ. Health 2013; 76: 990–1002.
  • Kumar V, Gill KD, Aluminium neurotoxicity: neuro-behavioural and oxidative aspects.Arch. Toxicol. 2009; 83: 965–78.
  • Kim YS, Chung YH, Seo DS, Choi HS, Lim CH, Twenty-Eight-Day Repeated Inhalation Toxicity Study of Aluminum Oxide Nanoparticles in Male Sprague-Dawley Rats. Toxicol Res. 2018; 34(4):343-54.
There are 18 citations in total.

Details

Primary Language English
Subjects Nanomedicine
Journal Section Research Articles
Authors

Buket Bakan 0000-0002-4400-6776

Publication Date December 9, 2024
Submission Date August 26, 2024
Acceptance Date September 11, 2024
Published in Issue Year 2024

Cite

Vancouver Bakan B. Size-dependent toxicological effects comparison of Aluminum Oxide Nanoparticles (Al2O3 NPs). ETD. 2024;63(4):603-10.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519