Research Article
BibTex RIS Cite

FDG PET/BT görüntülemede tiroid bezinde rastlantısal saptanan fokal artmış FDG tutulumunun klinik önemi

Year 2019, , 27 - 31, 14.03.2019
https://doi.org/10.19161/etd.417340

Abstract

Amaç: Bu çalışmada
tiroid bezinde önceden malignite varlığı bilinmeyen olgularda, FDG PET/BT
görüntüleme sırasında rastlantısal saptanan fokal artmış FDG (RSFA-FDG)
tutulumunun prevalansı, klinik önemi ve malignite oranlarını araştırmak
amaçlandı.



Gereç ve Yöntem: Mayıs 2014- Eylül 2016 tarihleri arasında FDG PET/BT
görüntülemesi yapılan 7267 hastada tiroid bezinde RSFA-FDG tutulumu saptanan
193 (%2.6) olgunun klinik takipleri ve SUVmax değerleri retrospektif
değerlendirildi. 



Bulgular: Tiroid bezinde RSFA-FDG tutulumlarının SUVmax değeri 3 -71
arasında olup ortalama 9.13±7.4 olarak saptandı. Hastaların %54.4’ünde
(105/193) olası tiroid patolojileriyle ilgili inceleme yapıldığı görüldü. 39
hastanın (%20.2) patolojik incelemesi mevcut olup, bunların 10’u tiroidektomi
materyali, 29 tanesi ise biyopsi sonucuydu. Biyopsi yapılan 29 hastadan iki
olgu tiroid papiller karsinomu (TPK), dört olgu TPK yönünden kuşkulu, biri
metastatik odak, 22’si ise benign hastalıklar lehine raporlanmıştı. Opere olan
10 hastanın beşinde TPK, ikisinde metastatik odak, kalan üç vakada ise tiroidin
benign nodüler hastalıklarıyla uyumlu bulgular saptanmıştı. Malignite tanısı
alan 10 tiroid nodülünde SUVmax değeri 3- 34.9 arasında olup
ortalama SUVmax: 12.5±9.1 idi. Serimizde FDG PET/BT görüntülemede
RSFA-FDG tutulumu gösteren tiroid nodülü saptanma oranı %2.6 olup, hastaların
%20.2’sinde patolojik inceleme yapılmış, malignite oranı %25.6 (10/39) olarak
saptanmıştır. 



Sonuç: FDG PET/BT
görüntüleme sırasında saptanan RSFA-FDG tutulumunda malignite oranının yüksek
olduğu görülmektedir. Hastaların büyük bölümüne ileri inceleme yapılmamış
olması primer maligniteye bağlı sağ kalım beklentisinin kısa olmasına bağlı
olabilir.

References

  • Dean DS, Gharib H. Epidemiology of thyroid nodules. Best Pract Res Clin Endocrinol Metab 2008;22(6):901-11.
  • National cancer institue surveillance, epidemiyology and end results (SEER). Available from: http:// seer.cancer.gov
  • Nakamoto Y, Tatsumi M, Hammoud D, Cohade C, Osman MM, Wahl RL. Normal FDG distribution patterns in the head and neck: PET/CT evaluation. Radiology 2005;234(3):879–85.
  • Kim TY, Kim WB, Ryu JS, Gong G, Hong SJ, Shong YK. 18F-fluorodeoxyglucose uptake in thyroid from positron emission tomogram (PET) for evaluation in cancer patients: High prevalence of malignancy in thyroid PET incidentaloma. Laryngoscope 2005;115(6):1074-8.
  • Warburg O, Posener K, Negelein E. The metabolism of cancer cells. Biochem Zeitschr 1924;152:129-69.
  • Di Chiro G, DeLaPaz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 1982;32(12):1323-9.
  • Higashi T, Saga T, Nakamoto Y, et al. Relationship between retention index in dual-phase 18F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med 2002;43(2):173-80.
  • Bogsrud TV, Lowe V. Normal variants and pitfalls in whole-body PET imaging with18F FDG. Appl Radiol 2006;35(1):16-30.
  • Field J. Intermediary metabolism of the thyroid. In: Astwood EB, Greep RO (eds). American Physiological Society Handbook of Physiology: Endocrinology; Section 7, Volume 3, Thyroid. Washington, DC: American Physiological Society; 1974:147–59.
  • Hosaka Y, Tawata M, Kurihara A, Ohtaka M, Endo T, Onaya T. The regulation of two distinct glucose transporter (GLUT1 and GLUT4) gene expressions in cultured rat thyroid cells by thyrotropin. Endocrinology 1992;131(1):159-65.
  • Gould GW, Thomas HM, Jess TJ, Bell GI. Expression of human glucose transporters in Xenopus oocytes: Kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry 1991;30(21):5139-45.
  • Gordon BA, Flanagan FL, Dehdashti F. Whole-body positron emission tomography: Normal variations, pitfalls, and technical considerations. AJR 1997;169(6):1675-80.
  • Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: Physiologic and benign variants. Radiographics 1999;19(1):61-77.
  • Yasuda S, Shohtsu A, Ide M, Takagi S, Takahashi W, Suzuki Y, Horiuchi M. Chronic thyroiditis: Diffuse uptake of FDG at PET. Radiology 1998;207(3):75-8.
  • Karantanis D, Bogsurd TV, Wiseman GA et al. Clinical significance of diffusely increased 18F-FDG uptake in the thyroid gland. J Nucl Med 2007;48(6):896-901.
  • Choi JY, Lee KS, Kim HJ, et al. Focal thyroid lesions incidentally identified by integrated 18F-FDG PET/CT: Clinical significance and improved characterization. J Nucl Med 2006;47(4):609-15.
  • Cohen MS, Arslan N, Dehdashti F, et al. Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography. Surgery 2001;130(6):941-46.
  • Jamie C, Mitchell MD, Frederick Grant MD, et al. Preoperative evaluation of thyroid nodules with 18FDG-PET/CT. Surgery 2005;138(6):1166-75.
  • Nayan S, Ramakrishna J, Gupta MK. The proportion of malignancy in incidental thyroid lesions on 18-FDG PET study: A systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2014;151(2):190-200.
  • Chisin R, Macapinlac HA. The indications of FDG-PET in neck oncology. Radiol Clin North Am 2000;38(5):999-1012.
  • Larson SM, Robbins R. Positron emission tomography in thyroid cancer management. Semin Roentgenol 2002;37(2):169-74.
  • Lind P, Kumnig G, Matschnig S, et al. The role of F-18FDG PET in thyroid cancer. Acta Med Austriaca 2000;27(2):38-41.
  • Robbins RJ, Wan Q, Grewal RK et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 2006;91(2):498-505.
  • Ohba K, Nishizawa S, Matsushita A, et al. High incidence of thyroid cancer in focal thyroid incidentaloma detected by 18 F-fluorodeoxyglucose positron emission tomography in relatively young healthy subjects: Results of 3-year follow-up. Endocr J 2010;57(5):395-401.
  • Pagano L, Sama MT, Morani F, et al. Thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography with CT (FDG-PET/CT): Clinical and pathological relevance. Clin Endocrinol 2011;75(4):528-34.
  • Nilsson IL, Arnberg F, Zedenius J, Anders S. Thyroid incidentaloma detected by fluorodeoxyglucose positron emission tomography/computed tomography: practical management algorithm. World J Surg 2011;35(12):2691-7.
  • Kao YH, Lim SS, Ong SC, Padhy AK. Thyroid incidentalomas on fluorine-18-fluorodeoxyglucose positron emission tomography-computed tomography: Incidence, malignancy risk, and comparison of standardized uptake values. Can Assoc Radiol J 2012;63(4):289-93.
  • King DL, Stack BC, Jr, Spring PM, et al. Incidence of thyroid carcinoma in fluorodeoxyglucose positron emission tomography- positive thyroid incidentalomas. Otolaryngol Head Neck Surg 2007;137(3):400–4.
  • Yang Z, Shi W, Zhu B, Hu S et al. Prevalence and risk of cancer of thyroid incidentaloma identified by fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography. J Otolaryngol Head Neck Surg 2012;41(5):327-33.
  • Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26(1):1-133.

Clinical significance of random finding of focal increased activity in thyroid gland on FDG PET/CT imaging

Year 2019, , 27 - 31, 14.03.2019
https://doi.org/10.19161/etd.417340

Abstract

Aim: We aimed to investigate prevalence,
clinical significance and malignancy rates of incidentally detected focal
increased FDG uptake in thyroid gland on FDG PET/CT imaging in cases without
known thyroid malignancy.



Materials and Methods: Of the 7267
patients who underwent FDG PET/CT imaging between May 2014 and September 2016,
193 (2.6%) patients who had incidentally detected focal increased FDG uptake in
thyroid gland were enrolled into the study for retrospective evaluation of
clinical follow-up and SUVmax values.
Results: The SUVmax values of incidentally detected focal increased FDG
foci ranged between 3-71, with an average of 9.13±7.4. Of the 193 patients, 105
(54%) were examined for possible thyroid diseases. A total 39 (20.2%) patients
(10 histopathological, 29 cytological) had pathological examination. In cytological
examination, two thyroid papillary carcinomas (TPC), one metastasis and 22
benign lesions were reported and four were suspicious for TPC. Five TPC, two
primary tumor metastasis and three benign nodular diseases were detected in 10
patients who underwent sugery. In 10 thyroid nodules pathologically confirmed
as malignancy, SUVmax values ranged from 3 to 34.9 (mean 12.5±9.1). 

In our
series, incidental thyroid nodules with focal increased FDG uptake were
detected in 2.6% of FDG PET/CT examinations. Pathological examination was
performed in 20.2% of those patients and malignancy rate was 25.6% (10/39).


Conclusion: Rate of malignancy is high in
incidentally detected focal increased FDG uptake on FDG PET/CT imaging. The
fact that majority of patients have not undergone further examination may be
due to the short survival expectancy due to primary malignancy.

References

  • Dean DS, Gharib H. Epidemiology of thyroid nodules. Best Pract Res Clin Endocrinol Metab 2008;22(6):901-11.
  • National cancer institue surveillance, epidemiyology and end results (SEER). Available from: http:// seer.cancer.gov
  • Nakamoto Y, Tatsumi M, Hammoud D, Cohade C, Osman MM, Wahl RL. Normal FDG distribution patterns in the head and neck: PET/CT evaluation. Radiology 2005;234(3):879–85.
  • Kim TY, Kim WB, Ryu JS, Gong G, Hong SJ, Shong YK. 18F-fluorodeoxyglucose uptake in thyroid from positron emission tomogram (PET) for evaluation in cancer patients: High prevalence of malignancy in thyroid PET incidentaloma. Laryngoscope 2005;115(6):1074-8.
  • Warburg O, Posener K, Negelein E. The metabolism of cancer cells. Biochem Zeitschr 1924;152:129-69.
  • Di Chiro G, DeLaPaz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 1982;32(12):1323-9.
  • Higashi T, Saga T, Nakamoto Y, et al. Relationship between retention index in dual-phase 18F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med 2002;43(2):173-80.
  • Bogsrud TV, Lowe V. Normal variants and pitfalls in whole-body PET imaging with18F FDG. Appl Radiol 2006;35(1):16-30.
  • Field J. Intermediary metabolism of the thyroid. In: Astwood EB, Greep RO (eds). American Physiological Society Handbook of Physiology: Endocrinology; Section 7, Volume 3, Thyroid. Washington, DC: American Physiological Society; 1974:147–59.
  • Hosaka Y, Tawata M, Kurihara A, Ohtaka M, Endo T, Onaya T. The regulation of two distinct glucose transporter (GLUT1 and GLUT4) gene expressions in cultured rat thyroid cells by thyrotropin. Endocrinology 1992;131(1):159-65.
  • Gould GW, Thomas HM, Jess TJ, Bell GI. Expression of human glucose transporters in Xenopus oocytes: Kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry 1991;30(21):5139-45.
  • Gordon BA, Flanagan FL, Dehdashti F. Whole-body positron emission tomography: Normal variations, pitfalls, and technical considerations. AJR 1997;169(6):1675-80.
  • Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: Physiologic and benign variants. Radiographics 1999;19(1):61-77.
  • Yasuda S, Shohtsu A, Ide M, Takagi S, Takahashi W, Suzuki Y, Horiuchi M. Chronic thyroiditis: Diffuse uptake of FDG at PET. Radiology 1998;207(3):75-8.
  • Karantanis D, Bogsurd TV, Wiseman GA et al. Clinical significance of diffusely increased 18F-FDG uptake in the thyroid gland. J Nucl Med 2007;48(6):896-901.
  • Choi JY, Lee KS, Kim HJ, et al. Focal thyroid lesions incidentally identified by integrated 18F-FDG PET/CT: Clinical significance and improved characterization. J Nucl Med 2006;47(4):609-15.
  • Cohen MS, Arslan N, Dehdashti F, et al. Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography. Surgery 2001;130(6):941-46.
  • Jamie C, Mitchell MD, Frederick Grant MD, et al. Preoperative evaluation of thyroid nodules with 18FDG-PET/CT. Surgery 2005;138(6):1166-75.
  • Nayan S, Ramakrishna J, Gupta MK. The proportion of malignancy in incidental thyroid lesions on 18-FDG PET study: A systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2014;151(2):190-200.
  • Chisin R, Macapinlac HA. The indications of FDG-PET in neck oncology. Radiol Clin North Am 2000;38(5):999-1012.
  • Larson SM, Robbins R. Positron emission tomography in thyroid cancer management. Semin Roentgenol 2002;37(2):169-74.
  • Lind P, Kumnig G, Matschnig S, et al. The role of F-18FDG PET in thyroid cancer. Acta Med Austriaca 2000;27(2):38-41.
  • Robbins RJ, Wan Q, Grewal RK et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 2006;91(2):498-505.
  • Ohba K, Nishizawa S, Matsushita A, et al. High incidence of thyroid cancer in focal thyroid incidentaloma detected by 18 F-fluorodeoxyglucose positron emission tomography in relatively young healthy subjects: Results of 3-year follow-up. Endocr J 2010;57(5):395-401.
  • Pagano L, Sama MT, Morani F, et al. Thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography with CT (FDG-PET/CT): Clinical and pathological relevance. Clin Endocrinol 2011;75(4):528-34.
  • Nilsson IL, Arnberg F, Zedenius J, Anders S. Thyroid incidentaloma detected by fluorodeoxyglucose positron emission tomography/computed tomography: practical management algorithm. World J Surg 2011;35(12):2691-7.
  • Kao YH, Lim SS, Ong SC, Padhy AK. Thyroid incidentalomas on fluorine-18-fluorodeoxyglucose positron emission tomography-computed tomography: Incidence, malignancy risk, and comparison of standardized uptake values. Can Assoc Radiol J 2012;63(4):289-93.
  • King DL, Stack BC, Jr, Spring PM, et al. Incidence of thyroid carcinoma in fluorodeoxyglucose positron emission tomography- positive thyroid incidentalomas. Otolaryngol Head Neck Surg 2007;137(3):400–4.
  • Yang Z, Shi W, Zhu B, Hu S et al. Prevalence and risk of cancer of thyroid incidentaloma identified by fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography. J Otolaryngol Head Neck Surg 2012;41(5):327-33.
  • Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26(1):1-133.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Research Articles
Authors

Sevil Tatlıdil 0000-0001-5707-7138

Ayşegül Akgün 0000-0001-8922-8762

Publication Date March 14, 2019
Submission Date December 26, 2017
Published in Issue Year 2019

Cite

Vancouver Tatlıdil S, Akgün A. FDG PET/BT görüntülemede tiroid bezinde rastlantısal saptanan fokal artmış FDG tutulumunun klinik önemi. ETD. 2019;58(1):27-31.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519