Review
BibTex RIS Cite

Rejeneratif tıpta model organizma; Aksolotl (Ambystoma Mexicanum)

Year 2022, Volume: 61 Issue: 1, 122 - 128, 15.03.2022
https://doi.org/10.19161/etd.1086385

Abstract

The axolotl has an extraordinary capacity to regenerate damaged and lost structures, especially the nervous system, limbs, organs such as the eye and heart, without causing scarring. It has become a very important model organism by attracting the attention of scientists working in both developmental biology and regenerative medicine and stem cell biology. The axolotl, which is amphibian and tetrapod, is a more preferred model due to its ease of maintenance and reproduction compared to other organisms such as African clawed frog (Xenopus laevis) or zebrafish (Danio rerio), which are relatively difficult to study. The main purposes of this review are the definition and origin of the axolotl, its taxonomy, anatomy, reproduction, nutrition, habitat, to give a perspective to scientists who want to work on this model organism by giving examples to the scientific data and study fields of the last 20 years by addressing issues such as how it contributes to scientific studies as a model organism.

References

  • Kumar A, Simon A. Salamanders in regeneration research: Methods and protocols. Salamanders Regen Res Methods Protoc. 2015; 1290: 1–357.
  • Contreras V, Martínez-Meyer E, Valiente E, Zambrano L. Recent decline and potential distribution in the last remnant area of the microendemic Mexican axolotl (Ambystoma mexicanum). Biol Conserv. 2009; 142 (12): 2881–5.
  • Gresens J. An introduction to the Mexican Axolotl (Ambystoma mexicanum). Lab Anim (NY). 2004; 33 (9): 41–7.
  • Cruz-Ramirez A. A day in the life of an Axolotl lab [Internet]. The Node. 2015 [cited 2021 Mar 22]. Available from: https://thenode.biologists.com/a-day-in-the-life-of-an-axolotl-lab/lablife/
  • Shaffer HB. Society of Systematic Biologists Phylogenetics of Model Organisms : The Laboratory Axolotl , Ambystoma mexicanum. Oxford Univ Press Soc Syst Biol. 2016; 42 (4): 508–22.
  • Reiß C, Olsson L, Hoßfeld U. The history of the oldest self-sustaining laboratory animal: 150 years of axolotl research. J Exp Zool Part B Mol Dev Evol. 2015; 324 (5): 393–404.
  • Smith HM. The Mexican Axolotl: Some Misconceptions and Problems. Bioscience. 1969 Jul; 19 (7): 593–615.
  • Straus NA. Comparative DNA renaturation kinetics in amphibians. Proc Natl Acad Sci U S A. 1971;68(4):799–802.
  • Francis ETB. The anatomy of the salamander. Oxford: The Clarendon Press; 1934. 1–478.
  • Bordzilovskaya NP, Dettlaff TA. The Axolotl Ambystoma mexicanum. Anim Species Dev Stud. 1991; 203–30.
  • Duncan T, Valenzuela M. Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res Ther. 2017 May 12; 8 (1): 1–9.
  • Monaghan JR, Stier AC, Michonneau F, Smith MD, Pasch B, Maden M, et al. Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity. Regeneration. 2014; 1 (1): 2–14.
  • Khattak S, Murawala P, Andreas H, Kappert V, Schuez M, Sandoval-Guzmán T, et al. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat Protoc. 2014; 9 (3): 529–40.
  • Whitford WG, Sherman RE. Aerial and Aquatic Respiration in Axolotl and Transformed Ambystoma tigrinum. 1968; 24 (3): 233–7.
  • Putnam JL, Parkerson JB. Anatomy of the Heart of the Amphibia. I. Siren lacertina. Copeia. 1977; 1977 (3): 476.
  • J. L. Putnam and J. B. Parkerson J. Anatomy of the Heart of the Amphibia II . Cryptobranchus alleganiensis. Allen Press behalf Herpetol Leag. 1985; 41 (3): 287–98.
  • Sanches PG, Op‘T Veld RC, De Graaf W, Strijkers GJ, Grüll H. Novel axolotl cardiac function analysis method using magnetic resonance imaging. PLoS One. 2017; 12 (8): 1–15.
  • Smith SC. Pattern formation in the urodele mechanoreceptive lateral line: What features can be exploited for the study of development and evolution? Int J Dev Biol. 1996 Aug 1; 40 (4): 727–33.
  • Stocum DL. Stages of forelimb regeneration inAmbystoma maculatum. J Exp Zool. 1979 Sep 1; 209 (3): 395–416.
  • Billett FS, Wild AE. Practical Studies of Animal Development. 1st ed. 1975.
  • Humphrey RR. Phenotypes recognizable in the progeny of axolotl parents both heterozygous for the same two mutant genes. Integr Comp Biol. 1978; 18 (2): 207–13.
  • Wakimoto BT. DNA synthesis after polyspermic fertilization in the axolotl. J Embryol Exp Morphol. 1979; Vol 52: 39–48.
  • Wakahara M. Spermatogenesis is extraordinarily accelerated in metamorphosis-arrested larvae of a salamander, Hynobius retardatus. Experientia. 1994; 50 (2): 94–8.
  • Forzán MJ, Heatley J, Russell KE, Horney B. Clinical pathology of amphibians: a review. Vet Clin Pathol. 2017 Mar 13;46(1):11–33.
  • Ching Y-C, Wedgwood RJ. Immunologic Responses in the Axolotl, Siredon Mexicanum. J Immunol. 1967; 99 (1).
  • Harris WA, Cole J. Common mechanisms in vertebrate axonal navigation: Retinal transplants between distantly related amphibia. J Neurogenet. 1984; 1 (2): 127–40.
  • de Both NJ. Transplantation of axolotl heads. Science (80-). 1968; 162 (852): 460–1.
  • Van Etten J. Lesser Known Large dsDNA Viruses: Preface. Current Topics in Microbiology and Immunology. 2009.
  • Cotter JD, Storfer A, Page RB, Beachy CK, Voss SR. Transcriptional response of Mexican axolotls to Ambystoma tigrinum virus (ATV) infection. BMC Genomics. 2008; 9.
  • Tsonis PA, Eguchi G. Carcinogens on regeneration: effects of N-Methyl-N′-Nitro-N-Nitrosoguanidine and 4-Nitroquinoline-1-Oxide on limb regeneration in adult newts. Differentiation. 1981 Dec 1; 20 (1–3): 52–60.
  • Ikenishi K, Nieuwkoop PD. Location and ultrastructure of primordial germ cells (PGCS) in Ambystoma mexıcanum. 1978; 20 (1): 1–9.
  • Signoret J, Briggs R, Humphrey RR. Nuclear transplantation in the axolotl. Dev Biol. 1962 Feb 1; 4 (1): 134–64.
  • Gilbert SF. Early Amphibian Development. 6th ed. Sinauer Associates; 2000.
  • Kragl M, Tanaka EM. Axolotl (Ambystoma mexicanum) limb and tail amputation. Cold Spring Harb Protoc. 2009; 4 (8).
  • Gardiner DM. Regulation of regeneration by Heparan Sulfate Proteoglycans in the Extracellular Matrix. Physiol Behav. 2019; 176 (3): 139–48.
  • Phan AQ, Lee J, Oei M, Flath C, Hwe C, Mariano R, et al. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum) . Regeneration. 2015; 2 (4): 182–201.
  • Amamoto R, Huerta VGL, Takahashi E, Dai G, Grant AK, Fu Z, et al. Adult axolotls can regenerate original neuronal diversity in response to brain injury. Elife. 2016; 5 (MAY2016): 1–22.
  • Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AWC, Pippel M, et al. The axolotl genome and the evolution of key tissue formation regulators. Nature. 2018; 554 (7690): 50–5.
  • Hopwood N. Approaches and species in the history of vertebrate embryology. Methods Mol Biol. 2011; 770: 1–20.
  • Li H, Wei X, Zhou L, Zhang W, Wang C, Guo Y, et al. Dynamic cell transition and immune response landscapes of axolotl limb regeneration revealed by single-cell analysis. Protein Cell. 2021; 12 (1): 57–66.
  • Abo-Al-Ela HG, Burgos-Aceves MA. Exploring the role of microRNAs in axolotl regeneration. Journal of Cellular Physiology. Wiley-Liss Inc.; 2020.
  • Albors AR, Tazaki A, Rost F, Nowoshilow S, Chara O, Tanaka EM. Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration. Elife. 2015; 4: 4: e10230.
  • Tica J, Didangelos A. Comparative transcriptomics of rat and axolotl after spinal cord injury dissects differences and similarities in inflammatory and matrix remodeling gene expression patterns. Front Neurosci. 2018; 12 (NOV): 1–7.
  • Ankeny RA, Leonelli S. What’s so special about model organisms? Stud Hist Philos Sci Part A. 2011; 42 (2): 313–23.
  • Cosden RS, Lattermann C, Romine S, Gao J, Voss SR, MacLeod JN. Intrinsic repair of full-thickness articular cartilage defects in the axolotl salamander. Osteoarthr Cartil. 2011; 19 (2): 200–5.

Model organism in regenerative medicine; Axolotl (Ambystoma Mexicanum)

Year 2022, Volume: 61 Issue: 1, 122 - 128, 15.03.2022
https://doi.org/10.19161/etd.1086385

Abstract

Sinir sistemi, ektremiteler, göz ve kalp gibi organlar olmak üzere hasarlanan ve yitirilen yapılarını skar oluşturmaksızın olağanüstü derecede yenileme kapasitesine sahip olan aksolotl; hem gelişimsel biyolojide hem de rejeneratif tıp ve kök hücre biyolojisi alanında çalışan bilim insanlarının dikkatini çekerek oldukça önemli bir model organizma haline gelmiştir. Amfibi ve tetrapod olan aksolotl, nispeten çalışılması zor olan Afrika pençeli kurbağası (Xenopus laevis) veya zebra balığı (Danio rerio) gibi diğer organizmalara göre bakımı ve üremesinin kolaylığı sebebiyle daha çok tercih edilen bir modeldir. Bu derlemenin temel amaçları; aksolotlın tanımı ve kökeninden başlayarak, taksonomisi, anatomisi, üremesi, beslenmesi, yaşam alanını, bilimsel çalışmalara model organizma olarak nasıl katkı sağladığı gibi konulara değinerek son 20 yıldaki bilimsel verileri ve çalışma alanlarına örnekler vererek bu model organizma üzerinde çalışmak isteyen bilim insanlarına bakış açısı kazandırmaktır.

Supporting Institution

Yok

References

  • Kumar A, Simon A. Salamanders in regeneration research: Methods and protocols. Salamanders Regen Res Methods Protoc. 2015; 1290: 1–357.
  • Contreras V, Martínez-Meyer E, Valiente E, Zambrano L. Recent decline and potential distribution in the last remnant area of the microendemic Mexican axolotl (Ambystoma mexicanum). Biol Conserv. 2009; 142 (12): 2881–5.
  • Gresens J. An introduction to the Mexican Axolotl (Ambystoma mexicanum). Lab Anim (NY). 2004; 33 (9): 41–7.
  • Cruz-Ramirez A. A day in the life of an Axolotl lab [Internet]. The Node. 2015 [cited 2021 Mar 22]. Available from: https://thenode.biologists.com/a-day-in-the-life-of-an-axolotl-lab/lablife/
  • Shaffer HB. Society of Systematic Biologists Phylogenetics of Model Organisms : The Laboratory Axolotl , Ambystoma mexicanum. Oxford Univ Press Soc Syst Biol. 2016; 42 (4): 508–22.
  • Reiß C, Olsson L, Hoßfeld U. The history of the oldest self-sustaining laboratory animal: 150 years of axolotl research. J Exp Zool Part B Mol Dev Evol. 2015; 324 (5): 393–404.
  • Smith HM. The Mexican Axolotl: Some Misconceptions and Problems. Bioscience. 1969 Jul; 19 (7): 593–615.
  • Straus NA. Comparative DNA renaturation kinetics in amphibians. Proc Natl Acad Sci U S A. 1971;68(4):799–802.
  • Francis ETB. The anatomy of the salamander. Oxford: The Clarendon Press; 1934. 1–478.
  • Bordzilovskaya NP, Dettlaff TA. The Axolotl Ambystoma mexicanum. Anim Species Dev Stud. 1991; 203–30.
  • Duncan T, Valenzuela M. Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res Ther. 2017 May 12; 8 (1): 1–9.
  • Monaghan JR, Stier AC, Michonneau F, Smith MD, Pasch B, Maden M, et al. Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity. Regeneration. 2014; 1 (1): 2–14.
  • Khattak S, Murawala P, Andreas H, Kappert V, Schuez M, Sandoval-Guzmán T, et al. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat Protoc. 2014; 9 (3): 529–40.
  • Whitford WG, Sherman RE. Aerial and Aquatic Respiration in Axolotl and Transformed Ambystoma tigrinum. 1968; 24 (3): 233–7.
  • Putnam JL, Parkerson JB. Anatomy of the Heart of the Amphibia. I. Siren lacertina. Copeia. 1977; 1977 (3): 476.
  • J. L. Putnam and J. B. Parkerson J. Anatomy of the Heart of the Amphibia II . Cryptobranchus alleganiensis. Allen Press behalf Herpetol Leag. 1985; 41 (3): 287–98.
  • Sanches PG, Op‘T Veld RC, De Graaf W, Strijkers GJ, Grüll H. Novel axolotl cardiac function analysis method using magnetic resonance imaging. PLoS One. 2017; 12 (8): 1–15.
  • Smith SC. Pattern formation in the urodele mechanoreceptive lateral line: What features can be exploited for the study of development and evolution? Int J Dev Biol. 1996 Aug 1; 40 (4): 727–33.
  • Stocum DL. Stages of forelimb regeneration inAmbystoma maculatum. J Exp Zool. 1979 Sep 1; 209 (3): 395–416.
  • Billett FS, Wild AE. Practical Studies of Animal Development. 1st ed. 1975.
  • Humphrey RR. Phenotypes recognizable in the progeny of axolotl parents both heterozygous for the same two mutant genes. Integr Comp Biol. 1978; 18 (2): 207–13.
  • Wakimoto BT. DNA synthesis after polyspermic fertilization in the axolotl. J Embryol Exp Morphol. 1979; Vol 52: 39–48.
  • Wakahara M. Spermatogenesis is extraordinarily accelerated in metamorphosis-arrested larvae of a salamander, Hynobius retardatus. Experientia. 1994; 50 (2): 94–8.
  • Forzán MJ, Heatley J, Russell KE, Horney B. Clinical pathology of amphibians: a review. Vet Clin Pathol. 2017 Mar 13;46(1):11–33.
  • Ching Y-C, Wedgwood RJ. Immunologic Responses in the Axolotl, Siredon Mexicanum. J Immunol. 1967; 99 (1).
  • Harris WA, Cole J. Common mechanisms in vertebrate axonal navigation: Retinal transplants between distantly related amphibia. J Neurogenet. 1984; 1 (2): 127–40.
  • de Both NJ. Transplantation of axolotl heads. Science (80-). 1968; 162 (852): 460–1.
  • Van Etten J. Lesser Known Large dsDNA Viruses: Preface. Current Topics in Microbiology and Immunology. 2009.
  • Cotter JD, Storfer A, Page RB, Beachy CK, Voss SR. Transcriptional response of Mexican axolotls to Ambystoma tigrinum virus (ATV) infection. BMC Genomics. 2008; 9.
  • Tsonis PA, Eguchi G. Carcinogens on regeneration: effects of N-Methyl-N′-Nitro-N-Nitrosoguanidine and 4-Nitroquinoline-1-Oxide on limb regeneration in adult newts. Differentiation. 1981 Dec 1; 20 (1–3): 52–60.
  • Ikenishi K, Nieuwkoop PD. Location and ultrastructure of primordial germ cells (PGCS) in Ambystoma mexıcanum. 1978; 20 (1): 1–9.
  • Signoret J, Briggs R, Humphrey RR. Nuclear transplantation in the axolotl. Dev Biol. 1962 Feb 1; 4 (1): 134–64.
  • Gilbert SF. Early Amphibian Development. 6th ed. Sinauer Associates; 2000.
  • Kragl M, Tanaka EM. Axolotl (Ambystoma mexicanum) limb and tail amputation. Cold Spring Harb Protoc. 2009; 4 (8).
  • Gardiner DM. Regulation of regeneration by Heparan Sulfate Proteoglycans in the Extracellular Matrix. Physiol Behav. 2019; 176 (3): 139–48.
  • Phan AQ, Lee J, Oei M, Flath C, Hwe C, Mariano R, et al. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum) . Regeneration. 2015; 2 (4): 182–201.
  • Amamoto R, Huerta VGL, Takahashi E, Dai G, Grant AK, Fu Z, et al. Adult axolotls can regenerate original neuronal diversity in response to brain injury. Elife. 2016; 5 (MAY2016): 1–22.
  • Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AWC, Pippel M, et al. The axolotl genome and the evolution of key tissue formation regulators. Nature. 2018; 554 (7690): 50–5.
  • Hopwood N. Approaches and species in the history of vertebrate embryology. Methods Mol Biol. 2011; 770: 1–20.
  • Li H, Wei X, Zhou L, Zhang W, Wang C, Guo Y, et al. Dynamic cell transition and immune response landscapes of axolotl limb regeneration revealed by single-cell analysis. Protein Cell. 2021; 12 (1): 57–66.
  • Abo-Al-Ela HG, Burgos-Aceves MA. Exploring the role of microRNAs in axolotl regeneration. Journal of Cellular Physiology. Wiley-Liss Inc.; 2020.
  • Albors AR, Tazaki A, Rost F, Nowoshilow S, Chara O, Tanaka EM. Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration. Elife. 2015; 4: 4: e10230.
  • Tica J, Didangelos A. Comparative transcriptomics of rat and axolotl after spinal cord injury dissects differences and similarities in inflammatory and matrix remodeling gene expression patterns. Front Neurosci. 2018; 12 (NOV): 1–7.
  • Ankeny RA, Leonelli S. What’s so special about model organisms? Stud Hist Philos Sci Part A. 2011; 42 (2): 313–23.
  • Cosden RS, Lattermann C, Romine S, Gao J, Voss SR, MacLeod JN. Intrinsic repair of full-thickness articular cartilage defects in the axolotl salamander. Osteoarthr Cartil. 2011; 19 (2): 200–5.
There are 45 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Reviews
Authors

Burak Çakar 0000-0002-4334-9320

Canberk Tomruk 0000-0002-3810-3705

Servet Çelik 0000-0002-1102-4417

Yiğit Uyanıkgil 0000-0002-4016-0522

Publication Date March 15, 2022
Submission Date September 26, 2021
Published in Issue Year 2022Volume: 61 Issue: 1

Cite

Vancouver Çakar B, Tomruk C, Çelik S, Uyanıkgil Y. Rejeneratif tıpta model organizma; Aksolotl (Ambystoma Mexicanum). EJM. 2022;61(1):122-8.