Research Article
PDF Mendeley EndNote BibTex Cite

Computational investigation of fitting for calculation of signal dynamics from hyperpolarized xenon-129 Gas MRI

Year 2022, Volume 61, Issue 1, 22 - 29, 15.03.2022
https://doi.org/10.19161/etd.1085607

Abstract

Aim: Computational fitting methods were investigated to determine the most accurate fitting approach for the calculation of dynamic hyperpolarized MRI parameters. Materials and Methods: The signal decay of a time-series Hyperpolarized xenon gas MRI phantom was fitted to Bloch equations using three methods varying the fitting parameters for calculation of flip angle, α, and longitudinal relaxation time, T1. The first fitting method used an initial calculation of α before the fitting process. The second and third techniques used direct fitting of signal decay equations with and without upper-lower boundaries for calculation of α, and T1. Wilcoxon signed-rank test was used to investigate the statistical significance of the calculated parameters. Results: The first approach was the most accurate fitting technique that allowed direct calculation of α=8.65° in agreement to the third approach α=8.73±0.78°, 8.75±0.12°, 8.67±0.05°. Additionally, the standard deviation of the calculated T1 was lower than 1% (T1=103.2±0.04s) which was significantly more accurate than the second method (T1=90±30.2s and 135.7±10.3s) and the third method (T1=101.4±5.1s and 113.5±16.1s). Conclusion: The first technique provides repeatable and reliable calculation of signal decay parameters including α and T1 from the dynamic hyperpolarized gas MR images and more accurate than direct fitting methods.

References

  • Matin TN, Rahman N, Nickol AH, et al. Chronic Obstructive Pulmonary Disease: Lobar Analysis with Hyperpolarized 129Xe MR Imaging. Radiology. 2017; 282: 857-68.
  • Chen M, Doganay O, Matin T, et al. Delayed ventilation assessment using fast dynamic hyperpolarised Xenon-129 magnetic resonance imaging. Eur Radiol. 2019.
  • Qing K, Tustison NJ, Mugler JP, 3rd, et al. Probing Changes in Lung Physiology in COPD Using CT, Perfusion MRI, and Hyperpolarized Xenon-129 MRI. Acad Radiol. 2019; 26: 326-34.
  • He M, Driehuys B, Que LG, Huang YT. Using Hyperpolarized 129Xe MRI to Quantify the Pulmonary Ventilation Distribution. Acad Radiol. 2016; 23: 1521-31.
  • Svenningsen S, Guo F, Kirby M, et al. Pulmonary functional magnetic resonance imaging: asthma temporal-spatial maps. Acad Radiol. 2014; 21: 1402-10.
  • Shukla Y, Wheatley A, Kirby M, et al. Hyperpolarized 129Xe magnetic resonance imaging: tolerability in healthy volunteers and subjects with pulmonary disease. Acad Radiol. 2012; 19: 941-51.
  • Wild JM. Imaging pathophysiological changes in the lungs in IPF with xenon magnetic resonance imaging. Thorax. 2018; 73:1.
  • Mammarappallil JG, Rankine L, Wild JM, Driehuys B. New Developments in Imaging Idiopathic Pulmonary Fibrosis With Hyperpolarized Xenon Magnetic Resonance Imaging. J Thorac Imaging. 2019; 34: 136-50.
  • Doganay O, Chen M, Matin T, et al. Magnetic resonance imaging of the time course of hyperpolarized (129) Xe gas exchange in the human lungs and heart. Eur Radiol. 2019; 29: 2283-92.
  • Marshall H, Stewart NJ, Chan H-F, Rao M, Norquay G, Wild JM. In vivo methods and applications of xenon-129 magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy. 2021; 122: 42-62.
  • Kern AL, Gutberlet M, Voskrebenzev A, et al. Mapping of regional lung microstructural parameters using hyperpolarized (129) Xe dissolved-phase MRI in healthy volunteers and patients with chronic obstructive pulmonary disease. Magn Reson Med. 2019; 81:2360-73.
  • Ruppert K, Hamedani H, Amzajerdian F, et al. Assessment of Pulmonary Gas Transport in Rabbits Using Hyperpolarized Xenon-129 Magnetic Resonance Imaging. Scientific Reports. 2018; 8:7310.
  • Patz S, Muradyan I, Hrovat MI, et al. Diffusion of hyperpolarized Xe-129 in the lung: a simplified model of Xe-129 septal uptake and experimental results. New J Phys. 2011; 13.
  • Marshall H, Ajraoui S, Deppe MH, Parra-Robles J, Wild JM. K-space filter deconvolution and flip angle self-calibration in 2D radial hyperpolarised 3He lung MRI. NMR in biomedicine. 2012; 25:389-99.
  • Wild JM, Paley MN, Viallon M, Schreiber WG, van Beek EJ, Griffiths PD. k-space filtering in 2D gradient-echo breath-hold hyperpolarized 3He MRI: spatial resolution and signal-to-noise ratio considerations. Magn Reson Med. 2002; 47: 687-95.
  • Wild JM, Paley MN, Kasuboski L, et al. Dynamic radial projection MRI of inhaled hyperpolarized 3He gas. Magn Reson Med. 2003; 49: 991-7.
  • Xu X, Norquay G, Parnell SR, et al. Hyperpolarized 129Xe gas lung MRI-SNR and T2* comparisons at 1.5 T and 3 T. Magn Reson Med. 2012; 68: 1900-4.
  • Ajraoui S, Parra-Robles J, Marshall H, Deppe MH, Clemence M, Wild JM. Acquisition of (3) He ventilation images, ADC, T(2)* and B(1) maps in a single scan with compressed sensing. NMR in biomedicine. 2012; 25: 44-51.
  • Marshall H, Parra-Robles J, Deppe MH, Lipson DA, Lawson R, Wild JM. (3) He pO2 mapping is limited by delayed-ventilation and diffusion in chronic obstructive pulmonary disease. Magn Reson Med. 2014; 71:1172-8.
  • Ruppert K, Amzajerdian F, Hamedani H, et al. Assessment of flip angle-TR equivalence for standardized dissolved-phase imaging of the lung with hyperpolarized 129Xe MRI. Magn Reson Med. 2019; 81:1784-94.
  • Zhong J, Ruan W, Han Y, Sun X, Ye C, Zhou X. Fast Determination of Flip Angle and T1 in Hyperpolarized Gas MRI During a Single Breath-Hold. Sci Rep. 2016; 6: 25854.
  • Doganay O, Matin T, Chen M, et al. Time-series hyperpolarized xenon-129 MRI of lobar lung ventilation of COPD in comparison to V/Q-SPECT/CT and CT. Eur Radiol. 2019; 29: 4058-67.
  • Miller GW, Altes TA, Brookeman JR, De Lange EE, Mugler JP, 3rd. Hyperpolarized 3He lung ventilation imaging with B1-inhomogeneity correction in a single breath-hold scan. Magma. 2004; 16: 218-26.
  • Norquay G, Collier GJ, Rao M, Stewart NJ, Wild JM. ^{129}Xe-Rb Spin-Exchange Optical Pumping with High Photon Efficiency. Phys Rev Lett. 2018; 121:153201.
  • Nikolaou P, Coffey AM, Walkup LL, et al. XeNA: an automated 'open-source' (129)Xe hyperpolarizer for clinical use. Magnetic resonance imaging. 2014; 32:541-50.
  • Hersman FW, Ruset IC, Ketel S, et al. Large production system for hyperpolarized 129 Xe for human lung imaging studies. Acad Radiol. 2008; 15: 683-92.
  • Driehuys B, Pollaro J, Cofer GP. In vivo MRI using real-time production of hyperpolarized 129 Xe. Magn Reson Med. 2008; 60:14-20.
  • Wild JM, Fichele S, Woodhouse N, Paley MN, Kasuboski L, van Beek EJ. 3D volume-localized pO2 measurement in the human lung with 3He MRI. Magn Reson Med. 2005; 53: 1055-64.
  • Fain SB, Carey K, Barton GP, Sorkness RL. Basics and Clinical Application of the MR Assessment of Ventilation. In: Ohno Y, Hatabu H, Kauczor H-U, editors. Pulmonary Functional Imaging: Basics and Clinical Applications. Cham: Springer International Publishing; 2021. p. 59-89.
  • Xiao S, Deng H, Duan C, et al. Considering low-rank, sparse and gas-inflow effects constraints for accelerated pulmonary dynamic hyperpolarized (129) Xe MRI. Journal of magnetic resonance. 2018; 290:29-37.
  • Xiao S, Deng H, Duan C, et al. Highly and Adaptively Undersampling Pattern for Pulmonary Hyperpolarized 129Xe Dynamic MRI. IEEE transactions on medical imaging. 2018.
  • Doganay O, Matin TN, McIntyre A, et al. Fast dynamic ventilation MRI of hyperpolarized (129) Xe using spiral imaging. Magn Reson Med. 2018; 79: 2597-606.
  • Wiesinger F, Weidl E, Menzel MI, et al. IDEAL spiral CSI for dynamic metabolic MR imaging of hyperpolarized [1-13C]pyruvate. Magn Reson Med. 2012; 68:8-16.
  • Lau AZ, Chen AP, Ghugre NR, et al. Rapid multislice imaging of hyperpolarized 13C pyruvate and bicarbonate in the heart. Magn Reson Med. 2010; 64:1323-31.
  • Doganay O, Wade T, Hegarty E, McKenzie C, Schulte RF, Santyr GE. Hyperpolarized (129) Xe imaging of the rat lung using spiral IDEAL. Magn Reson Med. 2016; 76: 566-76.
  • Zhao L, Mulkern R, Tseng CH, et al. Gradient-Echo Imaging Considerations for Hyperpolarized 129Xe MR. J Magn Reson B. 1996; 113: 179-83.
  • Patz S, Hersman FW, Muradian I, et al. Hyperpolarized (129) Xe MRI: a viable functional lung imaging modality? Eur J Radiol. 2007; 64:335-44.
  • Doganay O, Thind K, Wade T, Ouriadov A, Santyr GE. Transmit-only/receive-only radiofrequency coil configuration for hyperpolarized129Xe MRI of rat lungs. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering. 2015; 45: 115-24.

Hiperpolarize ksenon-129 Gaz MRG'den elde edilen sinyal dinamiğinin hesaplanması için uyarlamanın hesapsal incelenmesi

Year 2022, Volume 61, Issue 1, 22 - 29, 15.03.2022
https://doi.org/10.19161/etd.1085607

Abstract

Amaç: Dinamik hiperpolarize MRI parametrelerinin hesaplanmasında en doğru uyarlama yaklaşımını belirlemek için hesaplamalı uydurma yöntemleri araştırılmıştır. Gereç ve Yöntem: Bir zaman-serisi Hiperpolarize ksenon gazı MRG fantomunun sinyal bozunması, döndürme açısı α ve boylamsal azalma süresi T1'in hesaplanması için uyarlama parametrelerini değiştiren üç yöntem kullanılarak Bloch denklemlerine yerleştirilmiştir. İlk uyarlama yöntemi, uyarlama işleminden önce ilk α hesaplamasını kullanmaktadır. İkinci ve üçüncü teknikler α ve T1'in hesaplanması için üst ve alt limitleri olan ve olmayan sinyal bozunma denklemlerinin doğrudan uyarlamasını kullanmaktadır. Hesaplanan parametrelerin istatistiksel anlamlılığını araştırmak için Wilcoxon işaretli sıra testi kullanılmıştır. Bulgular: İlk yaklaşım, α = 8,65°'nin doğrudan hesaplanmasına izin veren en doğru uygulama tekniğidir ve üçüncü yaklaşımla uyumludur. Ek olarak, hesaplanan T1'in standart sapması %1'den düşüktür (T1 = 103,2 ± 0,04s) ve bu ikinci yöntem ile (T1 = 90 ± 30,2s ve 135,7 ± 10,3s) ve üçüncü yöntemden (T1 = 101,4 ± 5,1s ve 113,5 ± 16,1s) anlamlı derecede daha doğrudur. Sonuç: İlk teknik, dinamik hiperpolarize gaz MR görüntülerinden α ve T1 dâhil olmak üzere sinyal bozunma parametrelerinin tekrarlanabilir ve güvenilir bir şekilde hesaplanmasını ve doğrudan uyarlama yöntemlerinden daha doğru olmasını sağlamaktadır.

References

  • Matin TN, Rahman N, Nickol AH, et al. Chronic Obstructive Pulmonary Disease: Lobar Analysis with Hyperpolarized 129Xe MR Imaging. Radiology. 2017; 282: 857-68.
  • Chen M, Doganay O, Matin T, et al. Delayed ventilation assessment using fast dynamic hyperpolarised Xenon-129 magnetic resonance imaging. Eur Radiol. 2019.
  • Qing K, Tustison NJ, Mugler JP, 3rd, et al. Probing Changes in Lung Physiology in COPD Using CT, Perfusion MRI, and Hyperpolarized Xenon-129 MRI. Acad Radiol. 2019; 26: 326-34.
  • He M, Driehuys B, Que LG, Huang YT. Using Hyperpolarized 129Xe MRI to Quantify the Pulmonary Ventilation Distribution. Acad Radiol. 2016; 23: 1521-31.
  • Svenningsen S, Guo F, Kirby M, et al. Pulmonary functional magnetic resonance imaging: asthma temporal-spatial maps. Acad Radiol. 2014; 21: 1402-10.
  • Shukla Y, Wheatley A, Kirby M, et al. Hyperpolarized 129Xe magnetic resonance imaging: tolerability in healthy volunteers and subjects with pulmonary disease. Acad Radiol. 2012; 19: 941-51.
  • Wild JM. Imaging pathophysiological changes in the lungs in IPF with xenon magnetic resonance imaging. Thorax. 2018; 73:1.
  • Mammarappallil JG, Rankine L, Wild JM, Driehuys B. New Developments in Imaging Idiopathic Pulmonary Fibrosis With Hyperpolarized Xenon Magnetic Resonance Imaging. J Thorac Imaging. 2019; 34: 136-50.
  • Doganay O, Chen M, Matin T, et al. Magnetic resonance imaging of the time course of hyperpolarized (129) Xe gas exchange in the human lungs and heart. Eur Radiol. 2019; 29: 2283-92.
  • Marshall H, Stewart NJ, Chan H-F, Rao M, Norquay G, Wild JM. In vivo methods and applications of xenon-129 magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy. 2021; 122: 42-62.
  • Kern AL, Gutberlet M, Voskrebenzev A, et al. Mapping of regional lung microstructural parameters using hyperpolarized (129) Xe dissolved-phase MRI in healthy volunteers and patients with chronic obstructive pulmonary disease. Magn Reson Med. 2019; 81:2360-73.
  • Ruppert K, Hamedani H, Amzajerdian F, et al. Assessment of Pulmonary Gas Transport in Rabbits Using Hyperpolarized Xenon-129 Magnetic Resonance Imaging. Scientific Reports. 2018; 8:7310.
  • Patz S, Muradyan I, Hrovat MI, et al. Diffusion of hyperpolarized Xe-129 in the lung: a simplified model of Xe-129 septal uptake and experimental results. New J Phys. 2011; 13.
  • Marshall H, Ajraoui S, Deppe MH, Parra-Robles J, Wild JM. K-space filter deconvolution and flip angle self-calibration in 2D radial hyperpolarised 3He lung MRI. NMR in biomedicine. 2012; 25:389-99.
  • Wild JM, Paley MN, Viallon M, Schreiber WG, van Beek EJ, Griffiths PD. k-space filtering in 2D gradient-echo breath-hold hyperpolarized 3He MRI: spatial resolution and signal-to-noise ratio considerations. Magn Reson Med. 2002; 47: 687-95.
  • Wild JM, Paley MN, Kasuboski L, et al. Dynamic radial projection MRI of inhaled hyperpolarized 3He gas. Magn Reson Med. 2003; 49: 991-7.
  • Xu X, Norquay G, Parnell SR, et al. Hyperpolarized 129Xe gas lung MRI-SNR and T2* comparisons at 1.5 T and 3 T. Magn Reson Med. 2012; 68: 1900-4.
  • Ajraoui S, Parra-Robles J, Marshall H, Deppe MH, Clemence M, Wild JM. Acquisition of (3) He ventilation images, ADC, T(2)* and B(1) maps in a single scan with compressed sensing. NMR in biomedicine. 2012; 25: 44-51.
  • Marshall H, Parra-Robles J, Deppe MH, Lipson DA, Lawson R, Wild JM. (3) He pO2 mapping is limited by delayed-ventilation and diffusion in chronic obstructive pulmonary disease. Magn Reson Med. 2014; 71:1172-8.
  • Ruppert K, Amzajerdian F, Hamedani H, et al. Assessment of flip angle-TR equivalence for standardized dissolved-phase imaging of the lung with hyperpolarized 129Xe MRI. Magn Reson Med. 2019; 81:1784-94.
  • Zhong J, Ruan W, Han Y, Sun X, Ye C, Zhou X. Fast Determination of Flip Angle and T1 in Hyperpolarized Gas MRI During a Single Breath-Hold. Sci Rep. 2016; 6: 25854.
  • Doganay O, Matin T, Chen M, et al. Time-series hyperpolarized xenon-129 MRI of lobar lung ventilation of COPD in comparison to V/Q-SPECT/CT and CT. Eur Radiol. 2019; 29: 4058-67.
  • Miller GW, Altes TA, Brookeman JR, De Lange EE, Mugler JP, 3rd. Hyperpolarized 3He lung ventilation imaging with B1-inhomogeneity correction in a single breath-hold scan. Magma. 2004; 16: 218-26.
  • Norquay G, Collier GJ, Rao M, Stewart NJ, Wild JM. ^{129}Xe-Rb Spin-Exchange Optical Pumping with High Photon Efficiency. Phys Rev Lett. 2018; 121:153201.
  • Nikolaou P, Coffey AM, Walkup LL, et al. XeNA: an automated 'open-source' (129)Xe hyperpolarizer for clinical use. Magnetic resonance imaging. 2014; 32:541-50.
  • Hersman FW, Ruset IC, Ketel S, et al. Large production system for hyperpolarized 129 Xe for human lung imaging studies. Acad Radiol. 2008; 15: 683-92.
  • Driehuys B, Pollaro J, Cofer GP. In vivo MRI using real-time production of hyperpolarized 129 Xe. Magn Reson Med. 2008; 60:14-20.
  • Wild JM, Fichele S, Woodhouse N, Paley MN, Kasuboski L, van Beek EJ. 3D volume-localized pO2 measurement in the human lung with 3He MRI. Magn Reson Med. 2005; 53: 1055-64.
  • Fain SB, Carey K, Barton GP, Sorkness RL. Basics and Clinical Application of the MR Assessment of Ventilation. In: Ohno Y, Hatabu H, Kauczor H-U, editors. Pulmonary Functional Imaging: Basics and Clinical Applications. Cham: Springer International Publishing; 2021. p. 59-89.
  • Xiao S, Deng H, Duan C, et al. Considering low-rank, sparse and gas-inflow effects constraints for accelerated pulmonary dynamic hyperpolarized (129) Xe MRI. Journal of magnetic resonance. 2018; 290:29-37.
  • Xiao S, Deng H, Duan C, et al. Highly and Adaptively Undersampling Pattern for Pulmonary Hyperpolarized 129Xe Dynamic MRI. IEEE transactions on medical imaging. 2018.
  • Doganay O, Matin TN, McIntyre A, et al. Fast dynamic ventilation MRI of hyperpolarized (129) Xe using spiral imaging. Magn Reson Med. 2018; 79: 2597-606.
  • Wiesinger F, Weidl E, Menzel MI, et al. IDEAL spiral CSI for dynamic metabolic MR imaging of hyperpolarized [1-13C]pyruvate. Magn Reson Med. 2012; 68:8-16.
  • Lau AZ, Chen AP, Ghugre NR, et al. Rapid multislice imaging of hyperpolarized 13C pyruvate and bicarbonate in the heart. Magn Reson Med. 2010; 64:1323-31.
  • Doganay O, Wade T, Hegarty E, McKenzie C, Schulte RF, Santyr GE. Hyperpolarized (129) Xe imaging of the rat lung using spiral IDEAL. Magn Reson Med. 2016; 76: 566-76.
  • Zhao L, Mulkern R, Tseng CH, et al. Gradient-Echo Imaging Considerations for Hyperpolarized 129Xe MR. J Magn Reson B. 1996; 113: 179-83.
  • Patz S, Hersman FW, Muradian I, et al. Hyperpolarized (129) Xe MRI: a viable functional lung imaging modality? Eur J Radiol. 2007; 64:335-44.
  • Doganay O, Thind K, Wade T, Ouriadov A, Santyr GE. Transmit-only/receive-only radiofrequency coil configuration for hyperpolarized129Xe MRI of rat lungs. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering. 2015; 45: 115-24.

Details

Primary Language English
Subjects Health Care Sciences and Services
Journal Section Research Articles
Authors

Özkan DOĞANAY This is me (Primary Author)
Department of Basic Oncology, Health Science Institute, Ege University, Izmir, Turkiye
0000-0002-5945-2090
Türkiye

Publication Date March 15, 2022
Application Date April 27, 2021
Acceptance Date August 19, 2021
Published in Issue Year 2022, Volume 61, Issue 1

Cite

Vancouver Doğanay Ö. Computational investigation of fitting for calculation of signal dynamics from hyperpolarized xenon-129 Gas MRI. Ege Tıp Dergisi. 2022; 61(1): 22-29.