Araştırma Makalesi
BibTex RIS Kaynak Göster

IR spektroskopi kullanılarak in vitro meme kanser kök hücrelerinin araştırılması

Yıl 2020, Cilt: 59 Sayı: 3, 149 - 154, 30.09.2020
https://doi.org/10.19161/etd.790394

Öz

Amaç: Kanser kök hücreleri (KKH), tümör içinde kendi kendilerini yenileme ve diğer hücre tiplerine farklılaşabilme kapasitesi sebebiyle tümörün başlaması, ilerlemesi, nüksetmesi, metastaz ve terapötik dirence yol açmaktadır. Bu nedenle, meme kanser kök hücrelerinin (MKKH) karakteristik özelliklerinin belirlenmesi gerekmektedir. Bu çalışmanın amacı, MKKH‟lerin akış sitometrisi ile izole edildikten sonra Fourier dönüşümlü kızılötesi (FTIR) spektroskopisi kullanarak hücre biyokimyasındaki farklılaşmalarının moleküler seviyede araştırılmasıdır.
Gereç ve Yöntem: MCF-7 meme kanser hücre hattındaki CD44+/CD24- yüzey belirteç özelliği gösteren MKKH‟ler akış sitometrisi ile izole edilmiştir. MCF10A, MCF-7 kanser hücre (KH) hattı ve bu hattan izole edilen CD44+/CD24- yüzey belirteç özelliklerine sahip MKKH‟'ler %0,9 NaCI içerisine resuspanse edildikten sonra FTIR spektrometre ile ölçülmüştür.
Bulgular: MCF-7 içerisindeki CD44+/CD24- yüzey belirteç özelliğine sahip KKH‟lerinin sort oranı %2,0-2,3 olarak belirlenmiştir. Elde edilen FTIR spektrumlarında, MKKH, meme kanser hücreleri (KH, non-KKH, bulk populasyon) ve sağlıklı hücreler arasında spektral benzerlikler ve farklılıklar tespit edilmiştir. MKKH‟lerde lipit ve protein sinyalleri daha güçlü olup hücre zarı akışkanlığı ve dinamiği fazladır. Sağlıklı hücreler ile kıyaslandığında, KH‟lerde α-helikal proteinler ve DNA sinyallerinde azalmaya karşın negatif yüklü karboksil gruplarından kaynaklanan sinyallerde artış gözlenmektedir. Bu veriler, MKKH‟lerin, sağlıklı ve KH‟lere kıyasla yapı, içerik ve dinamiği bakımından oldukça farklı bir profil sergilediğini göstermektedir.
Sonuç: Bu çalışma, MKKH‟lerinin moleküler yapısı ve içeriğindeki değişikliklerin incelemesi vasıtasıyla terapötik hedefli ilaç çalışmaları yapılabileceğini ortaya koymaktadır. FTIR spektroskopisi boyar madde gerektirmeden, hassas ve hızlı ölçüm alınması, örnek hazırlamada kolaylık ve az miktarda örnek gerektirmesi sebebiyle ileri hücre çalışmalarında ve medikal alanda biyolojik örneklerin analizlerinde kullanılabileceği de gösterilmiştir.

Kaynakça

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394–424.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin 2018; 68: 7–30.
  • Chen K, Huang Y, Chen J. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 2013; 34: 732–40.
  • Palomeras S, Ruiz-Martínez S, Puig T. Targeting Breast Cancer Stem Cells to Overcome Treatment Resistance. Molecules 2018; 23: 2193.
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 2003; 100: 3983–8.
  • Shetty G, Kendall C, Shepherd N, Stone N, Barr H. Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br J Cancer 2006; 94: 1460–4.
  • Kumar S, Desmedt C, Larsimont D, Sotiriou C, Goormaghtigh E. Change in the microenvironment of breast cancer studied by FTIR imaging. Analyst 2013; 138: 4058–65.
  • Güler G, Guven U, Oktem G. Characterization of CD133+/CD44+ human prostate cancer stem cells with ATR-FTIR spectroscopy. Analyst 2019; 144: 2138–49.
  • Ozdil B, Güler G, Acikgoz E, Kocaturk, DC, Aktug H. The effect of extracellular matrix on the differentiation of mouse embryonic stem cells. J Cell Biochem doi: 10.1002/jcb.29159.
  • Güler G, Acikgoz E, Karabay Yavasoglu NÜ, Bakan B, Goormaghtigh E, Aktug H. Deciphering the biochemical similarities and differences among mouse embryonic stem cells, somatic and cancer cells using ATR-FTIR spectroscopy. Analyst 2018; 143: 1624–34.
  • Güler G, Vorob‟Ev MM, Vogel V, Mäntele W. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy. Spectrochim Acta-Part A Mol Biomol Spectrosc 2016; 161:8–18.
  • Smolina M, Goormaghtigh E. Infrared imaging of MDA-MB-231 breast cancer cell line phenotypes in 2D and 3D cultures. Analyst 2015; 140: 2336–43.
  • Benard A, Desmedt C, Smolina M, et al. Infrared imaging in breast cancer: automated tissue component recognition and spectral characterization of breast cancer cells as well as the tumor microenvironment. Analyst 2014;139:1044–56.
  • Kumar S, Shabi TS, Goormaghtigh E. A FTIR imaging characterization of fibroblasts stimulated by various breast cancer cell lines. PLoS One 2014; 9: e111137.
  • Zhao R, Quaroni L, Casson AG. Fourier transform infrared (FTIR) spectromicroscopic characterization of stem-like cell populations in human esophageal normal and adenocarcinoma cell lines. Analyst 2010; 135: 53–61.
  • Hughes C, Liew M, Sachdeva A, et al. SR-FTIR spectroscopy of renal epithelial carcinoma side population cells displaying stem cell-like characteristics. Analyst 2010; 135: 3133-41.
  • Güler G, Acikgoz E, Öktem G. Determination of cellular differences of CD133+/CD44+ prostate cancer stem cells in two-dimensional and three-dimensional media by Fourier transformation infrared spectroscopy. Dokuz Eylül Üniversitesi Tıp Fakültesi Dergisi 2019; 33: 45–56.
  • Lue H, Podolak J, Kolahi K, et al. Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade. Genes Dev 2017; 31: 2067–84.
  • Kuo CY, Ann DK. When fats commit crimes: fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Commun 2018; 38: 47.
  • Mukherjee A, Kenny HA, Lengyel E. Unsaturated Fatty Acids Maintain Cancer Cell Stemness. Cell Stem Cell 2017; 20: 291–2.
  • Yi M, Li J, Chen S, Cai J, et al. Emerging role of lipid metabolism alterations in Cancer stem cells. J Exp Clin Cancer Res 2018; 37: 118.
  • Taraboletti G, Perin L, Bottazzi B, Mantovani A, Giavazzi R, Salmona M. Membrane fluidity affects tumor-cell motility, invasion and lung-colonizing potential. Int J Cancer 1989; 44: 707–13.
  • Zhao W, Prijic S, Urban BC, et al. Candidate antimetastasis drugs suppress the metastatic capacity of breast cancer cells by reducing membrane fluidity. Cancer Res 2016; 76: 2037–49.

Investigation of breast cancer stem cells in vitro by using IR spectroscopy

Yıl 2020, Cilt: 59 Sayı: 3, 149 - 154, 30.09.2020
https://doi.org/10.19161/etd.790394

Öz

Aim: Cancer stem cells (CSCs) lead to tumor initiation, progression, relapse, metastasis and therapeutic resistance due to the ability of tumor to self-renewal and differentiate into other cell types. Therefore, the characteristic features of breast CSCs need to be determined in detail. The aim of this study was to investigate the differences in cell biochemistry at the molecular level by using Fourier transform infrared (FTIR) spectroscopy after breast CSCs were isolated with flow cytometry.
Materials and Methods: Breast CSCs with CD44+/CD24- surface marker properties in the MCF-7 cancer cell lines were isolated by using flow cytometry (FACS). MCF10A, MCF-7 breast cancer cell line (cancer non-stem cells or non-CSCs) and breast CSCs were re-suspended into 0.9% NaCl, and each cell type was measured with the FTIR spectrometer.
Results: The portion of breast CSCs with CD44+/CD24- surface marker properties in MCF-7 was 2.0-2.3%. In the FTIR spectra, spectral similarities and differences among breast CSCs, non-CSCs and healthy cells were determined. In breast CSCs, the lipid and protein signals are quite strong accompanied with an increased cell membrane fluidity and dynamics. When non-CSCs are compared with healthy cells, a less amount of both α-helical proteins and DNA is detected while an increase in the signals of negatively charged carboxyl groups is noticed. These data clearly show that breast CSCs exhibit a very different profile in terms of structure, content and dynamics of cellular macromolecules compared to both non-CSCs and healthy cells.
Conclusion: Drug studies (targeted therapy, drug-action mechanism) can be performed by examining small changes in the molecular structure and content of breast CSCs. This study shows that FTIR spectroscopy can be used in advanced cell studies as well as in the analysis of biological samples in medical field due to rapid, label-free and accurate measurement without complex sample preparation procedures.

Kaynakça

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394–424.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin 2018; 68: 7–30.
  • Chen K, Huang Y, Chen J. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 2013; 34: 732–40.
  • Palomeras S, Ruiz-Martínez S, Puig T. Targeting Breast Cancer Stem Cells to Overcome Treatment Resistance. Molecules 2018; 23: 2193.
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 2003; 100: 3983–8.
  • Shetty G, Kendall C, Shepherd N, Stone N, Barr H. Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br J Cancer 2006; 94: 1460–4.
  • Kumar S, Desmedt C, Larsimont D, Sotiriou C, Goormaghtigh E. Change in the microenvironment of breast cancer studied by FTIR imaging. Analyst 2013; 138: 4058–65.
  • Güler G, Guven U, Oktem G. Characterization of CD133+/CD44+ human prostate cancer stem cells with ATR-FTIR spectroscopy. Analyst 2019; 144: 2138–49.
  • Ozdil B, Güler G, Acikgoz E, Kocaturk, DC, Aktug H. The effect of extracellular matrix on the differentiation of mouse embryonic stem cells. J Cell Biochem doi: 10.1002/jcb.29159.
  • Güler G, Acikgoz E, Karabay Yavasoglu NÜ, Bakan B, Goormaghtigh E, Aktug H. Deciphering the biochemical similarities and differences among mouse embryonic stem cells, somatic and cancer cells using ATR-FTIR spectroscopy. Analyst 2018; 143: 1624–34.
  • Güler G, Vorob‟Ev MM, Vogel V, Mäntele W. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy. Spectrochim Acta-Part A Mol Biomol Spectrosc 2016; 161:8–18.
  • Smolina M, Goormaghtigh E. Infrared imaging of MDA-MB-231 breast cancer cell line phenotypes in 2D and 3D cultures. Analyst 2015; 140: 2336–43.
  • Benard A, Desmedt C, Smolina M, et al. Infrared imaging in breast cancer: automated tissue component recognition and spectral characterization of breast cancer cells as well as the tumor microenvironment. Analyst 2014;139:1044–56.
  • Kumar S, Shabi TS, Goormaghtigh E. A FTIR imaging characterization of fibroblasts stimulated by various breast cancer cell lines. PLoS One 2014; 9: e111137.
  • Zhao R, Quaroni L, Casson AG. Fourier transform infrared (FTIR) spectromicroscopic characterization of stem-like cell populations in human esophageal normal and adenocarcinoma cell lines. Analyst 2010; 135: 53–61.
  • Hughes C, Liew M, Sachdeva A, et al. SR-FTIR spectroscopy of renal epithelial carcinoma side population cells displaying stem cell-like characteristics. Analyst 2010; 135: 3133-41.
  • Güler G, Acikgoz E, Öktem G. Determination of cellular differences of CD133+/CD44+ prostate cancer stem cells in two-dimensional and three-dimensional media by Fourier transformation infrared spectroscopy. Dokuz Eylül Üniversitesi Tıp Fakültesi Dergisi 2019; 33: 45–56.
  • Lue H, Podolak J, Kolahi K, et al. Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade. Genes Dev 2017; 31: 2067–84.
  • Kuo CY, Ann DK. When fats commit crimes: fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Commun 2018; 38: 47.
  • Mukherjee A, Kenny HA, Lengyel E. Unsaturated Fatty Acids Maintain Cancer Cell Stemness. Cell Stem Cell 2017; 20: 291–2.
  • Yi M, Li J, Chen S, Cai J, et al. Emerging role of lipid metabolism alterations in Cancer stem cells. J Exp Clin Cancer Res 2018; 37: 118.
  • Taraboletti G, Perin L, Bottazzi B, Mantovani A, Giavazzi R, Salmona M. Membrane fluidity affects tumor-cell motility, invasion and lung-colonizing potential. Int J Cancer 1989; 44: 707–13.
  • Zhao W, Prijic S, Urban BC, et al. Candidate antimetastasis drugs suppress the metastatic capacity of breast cancer cells by reducing membrane fluidity. Cancer Res 2016; 76: 2037–49.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Günnur Güler 0000-0002-8485-7372

Ümmü Güven 0000-0002-5427-263X

Eda Açıkgöz 0000-0002-6772-3081

Gülperi Öktem 0000-0001-6227-9519

Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 4 Eylül 2019
Yayımlandığı Sayı Yıl 2020Cilt: 59 Sayı: 3

Kaynak Göster

Vancouver Güler G, Güven Ü, Açıkgöz E, Öktem G. IR spektroskopi kullanılarak in vitro meme kanser kök hücrelerinin araştırılması. ETD. 2020;59(3):149-54.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519