Araştırma Makalesi
BibTex RIS Kaynak Göster

Laktobasillerden elde edilen hücresiz süzüntülerin metisiline dirençli Staphylococcus aureus, vankomisine dirençli Enterococcus ve karbapeneme dirençli Klebsiella suşlarını inhibisyonu

Yıl 2021, Cilt: 60 Sayı: 4, 332 - 339, 22.12.2021
https://doi.org/10.19161/etd.1037310

Öz

Amaç: Antibiyotik direnci büyük bir sağlık sorunudur. Son yıllarda, probiyotikler alternatif/destekleyici tıp alanında sık kullanılmaktadır. Bu nedenle, çalışmamızda, dört farklı lactobacillus türünün (L. fermentum, L. plantarum, L. acidophilus ve L. rhamnosus) hücresiz süzüntülerinin (cell-free supernatant, CFS) etken olarak izole edilen metisiline dirençli Staphylococcus aureus (MRSA), vankomisine dirençli Enterococcus (VRE) ve karbapeneme dirençli Klebsiella (KRK) suşlarının üremeleri üzerine inhibitör etkilerini in vitro saptamayı amaçladık.
Gereç ve Yöntem: Lactobacillus suşları de Man Rogosa Sharpe sıvı besiyerinde üretilmiştir; hücresiz süzüntüler %25, 50 ve 100’lük konsantrasyonları elde etmek için sulandırılmıştır. Patojen bakteriler mikroplaklarda, farklı konsantrasyonlarda CFS içeren ve içermeyen triptik soy buyyonda üretilmişlerdir. Üremeler, 37°C’deki dört saatlik inkübasyon sonunda spektrofotometrik yöntemle ölçülmüştür. İstatistiksel analizler, one-way ANOVA kullanılarak, Dunnett’in çoklu karşılaştırma testi ve Kruskal-Wallis test ile gerçekleştirilmiştir.
Bulgular: İncelenen tüm CFS konsantrasyonlarının MRSA, VRE ve KRK suşlarının üremelerini inhibe ettiği saptanmış; sonuçlar istatistiksel olarak anlamlı bulunmuştur (p<0.0001). Tüm CFS’lerin %50’lik konsantrasyonlarının MRSA suşlarının üremesine en etkili konsantrasyon olduğu belirlenmiştir. L.acidophilus, L.fermentum ve L.plantarum CFS’lerinin %50’lik konsantrasyonlarının VRE suşlarının üremesine en etkili konsantrasyon olduğu bulunmuştur. L.fermentum ve L.plantarum CFS’lerinin %50’lik konsantrasyonlarının, KRK üremesini en etkili biçimde inhibe eden konsantrasyon olduğu saptanmıştır. Tüm sonuçlar istatistiksel olarak anlamlı bulunmuştur (p<0.0001).
Sonuç: Çalışmamızda sonuçlarımız denenen tüm laktobasil CFS’lerinin çoğul antibiyotik dirençli bakterilerin üremesini inhibe ettiğini desteklemektedir. Bu inhibitör etkileri, mikroorganizmalara ve CFS’lerinin konsantrasyonlarına bağlı olarak değişkendir.

Kaynakça

  • Wright GD & Sutherland AD. New strategies for combating multidrug-resistant bacteria. Trends Mol Med 2007; 13 (6): 260-7.
  • Van Duin D & Paterson DL. Multidrug-resistant bacteria in the community: trends and lessons learned. Infect Dis Clin 2016; 30 (2): 377-90.
  • Falagas ME & Bliziotis IA. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Inter J Antimicrobial Agent 2007;29(6): 630-6.
  • Ah YM, Kim AJ & Lee JY. Colistin resistance in Klebsiella pneumoniae. Inter J Antimicrobial Agent 2014; 44 (1): 8-15.
  • Cattoir V & Leclercq R. Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce? J Antimicro Chemother 2013; 68 (4): 731-42.
  • Voss A, Milatovic D, Wallrauch-Schwarz C, Rosdahl VT & Braveny I. Methicillin-resistant Staphylococcus aureus in Europe. Euro J Clin Microbiol Infect Dis 1994; 13 (1): 50-5.
  • Brunel AS & Guery B. Multidrug resistant (or antimicrobial-resistant) pathogens-alternatives to new antibiotics? Swiss Med Weekly 2017; 147.
  • Oelschlaeger TA. Mechanisms of probiotic actions—a review. Int J Med Microbiol 2010; 300: 57–62.
  • Aween MM, Hassan Z, Muhialdin BJ, Eljamel YA, Al‐Mabrok ASW & Lani MN. Antibacterial activity of lactobacillus acidophilus strains isolated from honey marketed in malaysia against selected multiple antibiotic resistant (mar) gram‐positive bacteria. J Food Sci 2012; 77 (7): M364-M371.
  • Bhola J & Bhadekar R. Invitro synergistic activity of lactic acid bacteria against multi-drug resistant staphylococci. BMC Compl Alter Med 2019; 19(1): 70.
  • Chen CC, Lai CC, Huang HL, Huang WY, Toh HS, Weng TC, ... & Tang HJ. Antimicrobial activity of Lactobacillus species against carbapenem-resistant Enterobacteriaceae. Front Microbiol 2019;10: 789.
  • El-Mokhtar MA, Hassanein KM, Ahmed AS, Gad GF, Amin MM & Hassanein OF. Antagonistic Activities of Cell-Free Supernatants of Lactobacilli Against Extended-Spectrum β-Lactamase Producing Klebsiella pneumoniae and Pseudomonas aeruginosa. Infect Drug Resis 2020; 13: 543.
  • Manzoor A, Ul-Haq I, Baig S, Qazi JI & Seratlic S. Efficacy of locally isolated lactic acid bacteria against antibiotic-resistant uropathogens. Jundishapur J Microbiol 2016; 9:(1).
  • Naderi A, Kasra-Kermanshahi R, Gharavi S, Fooladi AAI, Alitappeh MA & Saffarian P. Study of antagonistic effects of Lactobacillus strains as probiotics on multi drug resistant (MDR) bacteria isolated from urinary tract infections (UTIs). Iranian J Basic Med Sci 2014; 17(3): 201.
  • Li X, Song L, Zhu S, Xiao Y, Huang Y, Hua Y, ... & Ren Z. Two strains of lactobacilli effectively decrease the colonization of VRE in a mouse model. Front Cell Infect Microbiol 2019; 9:6.
  • FAO/WHO (2001) Joint FAO/WHO Expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. http://www.fao.org/publications/card/en/c/7c102d95-2fd5-5b22-8faf-f0b2e68dfbb6/ Accessed 21 Jan 2021.
  • Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 2004; 28(4): 405-40.
  • Lau LYJ & Chye FY. Antagonistic effects of Lactobacillus plantarum 0612 on the adhesion of selected foodborne enteropathogens in various colonic environments. Food Cont 2018; 91: 237-47.
  • Voravuthikunchai SP, Bilasoi S & Supamala O. Antagonistic activity against pathogenic bacteria by human vaginal lactobacilli. Anaerobe 2006; 12 (5-6): 221-6.
  • Prabhurajeshwar C & Chandrakanth RK. Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomed Journal 2017; 40 (5): 270-83.
  • Karska-Wysocki B, Bazo M, Smoragiewicz W. Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol Res 2010; 165:674–86.
  • Nigam A, Kumar A, Madhusuda HV, Bhola N. In-vitro Screening of antibacterial activity of lactic acid bacteria against common enteric pathogens. J Biomed Sci 2012; 1:4.
  • Saha S, Tomaro-Duchesneau C, Malhotra M, Tabrizian M, Prakash S. Suppression of Streptococcus mutans and Candida albicans by probiotics: an in vitro study. Dentistry 2012; 2 (6):141–8.
  • Merghni A, Dallel I, Noumi E, Kadmi Y, Hentati H, Tobji S, Amor AB, Mastouri M. Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microb Pathog 2017; 104:84–9.
  • Poppi LB, Rivaldi JD, Coutinho TS, Astolfi-Ferreira CS, Ferreira AJP, Mancilha IM. Effect of Lactobacillus sp. İsolates supernatant on Escherichia coli O157: H7 enhances the role of organic acids production as a factor for pathogen control. Pesq Vet Bras 2015; 35: 353–9.
  • Kim JU, Kim Y, Han KS, Oh S, Whang KY, Kim JN, Kim SH. Function of cell-bound and released exopolysaccharides produced by Lactobacillus rhamnosus ATCC 9595. J Microbiol Biotechnol 2006; 16: 939–45.
  • Stecher B, Hardt WD. Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol 2011; 14: 82–91.
  • Alvarez-Olmos MI, Oberhelman RA. Probiotic agents and infectious diseases: a modern perspective on a traditional therapy. Clin Infect Dis 2001; 32 (11):1567–76.
  • Reid G & Burton J. Use of Lactobacillus to prevent infection by pathogenic bacteria. Microb Infect 2002; 4 (3): 319-24.
  • Tsai CC, Hsih HY, Chiu HH, Lai YY, Liu JH, Yu B & Tsen HY. Antagonistic activity against Salmonella infection in vitro and in vivo for two Lactobacillus strains from swine and poultry. Inter J Food Microbiol 2005; 102 (2): 185-94.
  • Doron S, Snydman DR & Gorbach SL. Lactobacillus GG: bacteriology and clinical applications. Gastroenterol Clin 2005; 34 (3): 483-98.
  • Yüksek FK, Gümüş D, Gündoğan Gİ & Küçüker MA. Cell-Free Lactobacillus sp Supernatants Modulate Staphylococcus aureus Growth, Adhesion and Invasion to Human Osteoblast (HOB) Cells. Curr Microbiol 2020; 1-8. https://doi.org/10.1007/s00284-020-02247-1
  • Mundi A, Delcenserie V, Amiri-Jami M, Moorhead S & Griffiths MW. Cell-free preparations of Lactobacillus acidophilus strain La-5 and Bifidobacterium longum strain NCC2705 affect virulence gene expression in Campylobacter jejuni. J Food Protec 2013; 76 (10):1740-6.
  • de Klerk N, Maudsdotter L, Gebreegziabher H, Saroj SD, Eriksson B, Eriksson OS, ... & Jonsson AB. Lactobacilli reduce Helicobacter pylori attachment to host gastric epithelial cells by inhibiting adhesion gene expression. Infect Immun 2016; 84 (5): 1526-35.
  • Onbas T, Osmanagaoglu O & Kiran F. Potential properties of lactobacillus plantarum F-10 as a bio-control strategy for wound infections. Probio Antimicr Prote 2019; 11 (4), 1110-23.
  • Zhang Z, Tao X, Shah NP & Wei H. Antagonistics against pathogenic Bacillus cereus in milk fermentation by Lactobacillus plantarum ZDY2013 and its anti-adhesion effect on Caco-2 cells against pathogens. J Dairy Sci 2016; 99 (4): 2666-74.
  • Aguilar C, Vanegas C & Klotz B. Antagonistic effect of Lactobacillus strains against Escherichia coli and Listeria monocytogenes in milk. J Dairy Res 2011; 78 (2): 136.
  • Tsai CC, Lai TM, Lin PP & Hsieh YM. Evaluation of lactic acid bacteria isolated from fermented plant products for antagonistic activity against urinary tract pathogen Staphylococcus saprophyticus. Probio Antimicr Prot 2018; 10 (2): 210-7.
  • Sun J, Hu XL, Le GW & Shi YH. Lactobacilli prevent hydroxy radical production and inhibit Escherichia coli and Enterococcus growth in system mimicking colon fermentation. Letters in Applied Microbiol 2010; 50 (3): 264-9.
  • Thanh NT, Chwen LT, Foo HL, Hair-Bejo M & Kasim AB. Inhibitory activity of metabolites produced by strains of Lactobacillus plantarum isolated from Malaysian fermented food. Int J Probio & Prebio 2010; 5 (1): 37.
  • Mahdi LH & Husain SN. Antagonstic Effect of Lactobacillus Fermentum Supernatant Against Enterococcus faecium and Enterococcus faecalis In Vitro. J Facult Med Baghdad 2012; 54(2):154-7.
  • Gümüş D, Yüksek FK, Bilgin M, Camadan FD & Küçüker MA. In Vitro Effects of Various Probiotic Products on Growth and Biofilm Formation of Clinical UPEC Strains. Acta Biol Maris 2020; 3(1): 5-14.
  • Fedorova TV, Vasina DV, Begunova AV, Rozhkova IV, Raskoshnaya TA & Gabrielyan NI. Antagonistic Activity of Lactic Acid Bacteria Lactobacillus spp. against Clinical Isolates of Klebsiella pneumoniae. App Biochem Microbiol 2018; 54 (3): 277-87.
  • Raras TYM, Firdausy AF, Kinanti IR & Noorhamdani N. Anti-Biofilm Activity of Lactic Acid Bacteria Isolated from Kefir Against Multidrug-Resistant Klebsiella pneumoniae. J Pure Appl Microbiol 2019; 13 (2): 983-92.
  • Saud B, Pandey P, Paudel G, Dhungana G & Shrestha V. In-vitro Antibacterial Activity of Probiotic against Human Multidrug Resistant Pathogens. Arch Vet Sci Med 2020; 3, 31-9.

Cell-free supernatants of lactobacilli inhibit methicilin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus and carbapenem-resistant Klebsiella strains

Yıl 2021, Cilt: 60 Sayı: 4, 332 - 339, 22.12.2021
https://doi.org/10.19161/etd.1037310

Öz

Aim: Antibiotic resistance is a major health problem. Recently, probiotics are used in the field of alternative/supportive medicine. Thus, in this study, we aimed to evaluate the in vitro inhibitory effects of four different cell-free supernatants (CFSs) of lactobacilli species (L. fermentum, L. plantarum, L. acidophilus and L. rhamnosus) on clinically isolated Methicilin-resistant Staphylococcus aureus (MRSA) strains, Vancomycin-resistant Enterococcus (VRE) strains, and Carbapenem-resistant Klebsiella (CRK) strains.
Materials and Methods: Lactobacillus strains were grown in de Man Rogosa Sharpe broth; after filtration, CFSs were diluted to obtain 25, 50, and 100% concentrations. Pathogen bacteria were grown in tryptic soy broth with and without CFSs in a micro-plate. The bacterial growths were measured using spectrophotometric method after four hours of incubation at 37°C. One-way ANOVA followed by Dunnett’s multiple comparisons and Kruskal-Wallis test were used for statistical analyses.
Results: All tested CFSs at all concentrations were found to inhibit growth of MRSA, VRE, CRK strains; the results were found statistically significant (p<0.0001). At 50% concentrations, all CFSs were found to be most effective on MRSA growth. The CFSs of L.fermentum, L.acidophilus and L.plantarum were found to be most inhibitory at 50% concentration on VRE growth. 50% diluted CFSs of L.fermentum and L.plantarum were found to be effective on growth of CRK. All results were found statistically significant (p<0.0001).
Conclusion: In our study, our results support that CFSs of lactobacilli strains inhibit growth of multi-drug resistant bacteria. Their inhibitory effects were dependent on microorganisms and CFS concentrations.

Kaynakça

  • Wright GD & Sutherland AD. New strategies for combating multidrug-resistant bacteria. Trends Mol Med 2007; 13 (6): 260-7.
  • Van Duin D & Paterson DL. Multidrug-resistant bacteria in the community: trends and lessons learned. Infect Dis Clin 2016; 30 (2): 377-90.
  • Falagas ME & Bliziotis IA. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Inter J Antimicrobial Agent 2007;29(6): 630-6.
  • Ah YM, Kim AJ & Lee JY. Colistin resistance in Klebsiella pneumoniae. Inter J Antimicrobial Agent 2014; 44 (1): 8-15.
  • Cattoir V & Leclercq R. Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce? J Antimicro Chemother 2013; 68 (4): 731-42.
  • Voss A, Milatovic D, Wallrauch-Schwarz C, Rosdahl VT & Braveny I. Methicillin-resistant Staphylococcus aureus in Europe. Euro J Clin Microbiol Infect Dis 1994; 13 (1): 50-5.
  • Brunel AS & Guery B. Multidrug resistant (or antimicrobial-resistant) pathogens-alternatives to new antibiotics? Swiss Med Weekly 2017; 147.
  • Oelschlaeger TA. Mechanisms of probiotic actions—a review. Int J Med Microbiol 2010; 300: 57–62.
  • Aween MM, Hassan Z, Muhialdin BJ, Eljamel YA, Al‐Mabrok ASW & Lani MN. Antibacterial activity of lactobacillus acidophilus strains isolated from honey marketed in malaysia against selected multiple antibiotic resistant (mar) gram‐positive bacteria. J Food Sci 2012; 77 (7): M364-M371.
  • Bhola J & Bhadekar R. Invitro synergistic activity of lactic acid bacteria against multi-drug resistant staphylococci. BMC Compl Alter Med 2019; 19(1): 70.
  • Chen CC, Lai CC, Huang HL, Huang WY, Toh HS, Weng TC, ... & Tang HJ. Antimicrobial activity of Lactobacillus species against carbapenem-resistant Enterobacteriaceae. Front Microbiol 2019;10: 789.
  • El-Mokhtar MA, Hassanein KM, Ahmed AS, Gad GF, Amin MM & Hassanein OF. Antagonistic Activities of Cell-Free Supernatants of Lactobacilli Against Extended-Spectrum β-Lactamase Producing Klebsiella pneumoniae and Pseudomonas aeruginosa. Infect Drug Resis 2020; 13: 543.
  • Manzoor A, Ul-Haq I, Baig S, Qazi JI & Seratlic S. Efficacy of locally isolated lactic acid bacteria against antibiotic-resistant uropathogens. Jundishapur J Microbiol 2016; 9:(1).
  • Naderi A, Kasra-Kermanshahi R, Gharavi S, Fooladi AAI, Alitappeh MA & Saffarian P. Study of antagonistic effects of Lactobacillus strains as probiotics on multi drug resistant (MDR) bacteria isolated from urinary tract infections (UTIs). Iranian J Basic Med Sci 2014; 17(3): 201.
  • Li X, Song L, Zhu S, Xiao Y, Huang Y, Hua Y, ... & Ren Z. Two strains of lactobacilli effectively decrease the colonization of VRE in a mouse model. Front Cell Infect Microbiol 2019; 9:6.
  • FAO/WHO (2001) Joint FAO/WHO Expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. http://www.fao.org/publications/card/en/c/7c102d95-2fd5-5b22-8faf-f0b2e68dfbb6/ Accessed 21 Jan 2021.
  • Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 2004; 28(4): 405-40.
  • Lau LYJ & Chye FY. Antagonistic effects of Lactobacillus plantarum 0612 on the adhesion of selected foodborne enteropathogens in various colonic environments. Food Cont 2018; 91: 237-47.
  • Voravuthikunchai SP, Bilasoi S & Supamala O. Antagonistic activity against pathogenic bacteria by human vaginal lactobacilli. Anaerobe 2006; 12 (5-6): 221-6.
  • Prabhurajeshwar C & Chandrakanth RK. Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomed Journal 2017; 40 (5): 270-83.
  • Karska-Wysocki B, Bazo M, Smoragiewicz W. Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol Res 2010; 165:674–86.
  • Nigam A, Kumar A, Madhusuda HV, Bhola N. In-vitro Screening of antibacterial activity of lactic acid bacteria against common enteric pathogens. J Biomed Sci 2012; 1:4.
  • Saha S, Tomaro-Duchesneau C, Malhotra M, Tabrizian M, Prakash S. Suppression of Streptococcus mutans and Candida albicans by probiotics: an in vitro study. Dentistry 2012; 2 (6):141–8.
  • Merghni A, Dallel I, Noumi E, Kadmi Y, Hentati H, Tobji S, Amor AB, Mastouri M. Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microb Pathog 2017; 104:84–9.
  • Poppi LB, Rivaldi JD, Coutinho TS, Astolfi-Ferreira CS, Ferreira AJP, Mancilha IM. Effect of Lactobacillus sp. İsolates supernatant on Escherichia coli O157: H7 enhances the role of organic acids production as a factor for pathogen control. Pesq Vet Bras 2015; 35: 353–9.
  • Kim JU, Kim Y, Han KS, Oh S, Whang KY, Kim JN, Kim SH. Function of cell-bound and released exopolysaccharides produced by Lactobacillus rhamnosus ATCC 9595. J Microbiol Biotechnol 2006; 16: 939–45.
  • Stecher B, Hardt WD. Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol 2011; 14: 82–91.
  • Alvarez-Olmos MI, Oberhelman RA. Probiotic agents and infectious diseases: a modern perspective on a traditional therapy. Clin Infect Dis 2001; 32 (11):1567–76.
  • Reid G & Burton J. Use of Lactobacillus to prevent infection by pathogenic bacteria. Microb Infect 2002; 4 (3): 319-24.
  • Tsai CC, Hsih HY, Chiu HH, Lai YY, Liu JH, Yu B & Tsen HY. Antagonistic activity against Salmonella infection in vitro and in vivo for two Lactobacillus strains from swine and poultry. Inter J Food Microbiol 2005; 102 (2): 185-94.
  • Doron S, Snydman DR & Gorbach SL. Lactobacillus GG: bacteriology and clinical applications. Gastroenterol Clin 2005; 34 (3): 483-98.
  • Yüksek FK, Gümüş D, Gündoğan Gİ & Küçüker MA. Cell-Free Lactobacillus sp Supernatants Modulate Staphylococcus aureus Growth, Adhesion and Invasion to Human Osteoblast (HOB) Cells. Curr Microbiol 2020; 1-8. https://doi.org/10.1007/s00284-020-02247-1
  • Mundi A, Delcenserie V, Amiri-Jami M, Moorhead S & Griffiths MW. Cell-free preparations of Lactobacillus acidophilus strain La-5 and Bifidobacterium longum strain NCC2705 affect virulence gene expression in Campylobacter jejuni. J Food Protec 2013; 76 (10):1740-6.
  • de Klerk N, Maudsdotter L, Gebreegziabher H, Saroj SD, Eriksson B, Eriksson OS, ... & Jonsson AB. Lactobacilli reduce Helicobacter pylori attachment to host gastric epithelial cells by inhibiting adhesion gene expression. Infect Immun 2016; 84 (5): 1526-35.
  • Onbas T, Osmanagaoglu O & Kiran F. Potential properties of lactobacillus plantarum F-10 as a bio-control strategy for wound infections. Probio Antimicr Prote 2019; 11 (4), 1110-23.
  • Zhang Z, Tao X, Shah NP & Wei H. Antagonistics against pathogenic Bacillus cereus in milk fermentation by Lactobacillus plantarum ZDY2013 and its anti-adhesion effect on Caco-2 cells against pathogens. J Dairy Sci 2016; 99 (4): 2666-74.
  • Aguilar C, Vanegas C & Klotz B. Antagonistic effect of Lactobacillus strains against Escherichia coli and Listeria monocytogenes in milk. J Dairy Res 2011; 78 (2): 136.
  • Tsai CC, Lai TM, Lin PP & Hsieh YM. Evaluation of lactic acid bacteria isolated from fermented plant products for antagonistic activity against urinary tract pathogen Staphylococcus saprophyticus. Probio Antimicr Prot 2018; 10 (2): 210-7.
  • Sun J, Hu XL, Le GW & Shi YH. Lactobacilli prevent hydroxy radical production and inhibit Escherichia coli and Enterococcus growth in system mimicking colon fermentation. Letters in Applied Microbiol 2010; 50 (3): 264-9.
  • Thanh NT, Chwen LT, Foo HL, Hair-Bejo M & Kasim AB. Inhibitory activity of metabolites produced by strains of Lactobacillus plantarum isolated from Malaysian fermented food. Int J Probio & Prebio 2010; 5 (1): 37.
  • Mahdi LH & Husain SN. Antagonstic Effect of Lactobacillus Fermentum Supernatant Against Enterococcus faecium and Enterococcus faecalis In Vitro. J Facult Med Baghdad 2012; 54(2):154-7.
  • Gümüş D, Yüksek FK, Bilgin M, Camadan FD & Küçüker MA. In Vitro Effects of Various Probiotic Products on Growth and Biofilm Formation of Clinical UPEC Strains. Acta Biol Maris 2020; 3(1): 5-14.
  • Fedorova TV, Vasina DV, Begunova AV, Rozhkova IV, Raskoshnaya TA & Gabrielyan NI. Antagonistic Activity of Lactic Acid Bacteria Lactobacillus spp. against Clinical Isolates of Klebsiella pneumoniae. App Biochem Microbiol 2018; 54 (3): 277-87.
  • Raras TYM, Firdausy AF, Kinanti IR & Noorhamdani N. Anti-Biofilm Activity of Lactic Acid Bacteria Isolated from Kefir Against Multidrug-Resistant Klebsiella pneumoniae. J Pure Appl Microbiol 2019; 13 (2): 983-92.
  • Saud B, Pandey P, Paudel G, Dhungana G & Shrestha V. In-vitro Antibacterial Activity of Probiotic against Human Multidrug Resistant Pathogens. Arch Vet Sci Med 2020; 3, 31-9.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Fatma Kalaycı Yüksek 0000-0002-0028-5646

Defne Gümüş 0000-0003-4070-6924

Derya Bayırlı Turan 0000-0002-7505-341X

Yasar Nakipoğlu 0000-0001-7979-7291

Rıza Adaleti 0000-0001-9576-6794

A. Mine Küçüker 0000-0001-8978-219X

Yayımlanma Tarihi 22 Aralık 2021
Gönderilme Tarihi 23 Ocak 2021
Yayımlandığı Sayı Yıl 2021Cilt: 60 Sayı: 4

Kaynak Göster

Vancouver Kalaycı Yüksek F, Gümüş D, Bayırlı Turan D, Nakipoğlu Y, Adaleti R, Küçüker AM. Cell-free supernatants of lactobacilli inhibit methicilin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus and carbapenem-resistant Klebsiella strains. ETD. 2021;60(4):332-9.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519