Araştırma Makalesi
BibTex RIS Kaynak Göster

Astım ve alerjik rinit komorbiditesi olan çocuklarda nazofaringeal mikrobiyotanın araştırılması

Yıl 2022, Cilt: 61 Sayı: 3, 371 - 378, 12.09.2022
https://doi.org/10.19161/etd.1167440

Öz

Amaç: Çalışmada sağlıklı, astımlı ve alerjik rinitli çocukların nazofaringeal bakteriyel mikrobiyotasının karşılaştırılması, hastalarda olası mikrobiyal disbiyozisin belirlenmesi amaçlanmıştır.
Gereç ve Yöntem: Çalışmaya toplam 15 olgu alınmıştır. Olguların beşi astımlı, beşi alerjik rinitli ve beşi sağlıklı kontrol grubudur. Nazal lavaj örneklerinden 16S metagenomiks ile üst solunum yolu mikrobiyotası belirlenmiştir.
Bulgular: Üst solunum yolu mikrobiyotasında en baskın şube astım hastalarında Firmucutes, sağlıklı kontrol grubu ve alerjik rinit grubunda ise Proteobacteria olarak saptanmıştır. Üst solunum yolu mikrobiyotasındaki en baskın cins ise astım hastalarında Dolosigranulum, sağlıklı kontrol grubunda Moraxella olarak saptanmıştır. Kontrol grubuyla karşılaştırıldığında astım hastalarında Moraxella cinsinin oranın azaldığı; Staphylococcus, Streptococcus ve Corynebacterium cinslerinin oranlarının arttığı belirlenmiştir.
Sonuç: Sonuç olarak; çocukluk çağında üst solunum yolu mikrobiyotasının alerjik rinit ve astım patogenezini belirlemedeki rolü kesin olarak saptanamamıştır. Gruplar arası oransal fark bulunması, tüm havayolu mikrobiyomunun çalışılması durumunda olası bir farkın olabileceğini desteklemektedir.

Kaynakça

  • Stiemsma LT, Turvey SE. Asthma and the microbiome: defining the critical window in early life. Allergy Asthma Clin Immunol. 2017; 13: 3.
  • Mallol J, Crane J, von Mutius E et al. The International study of asthma and allergies in childhood (ISAAC) phase three: a global synthesis. Allergol Immunopathol (Madr). 2013; 41 (2): 73–85.
  • Who.int [http://www.who.int/mediacentre/factsheets/fs307/en/]. World Health Organization: Asthma [Accessed 10 Sept 2016]. Available from: www.who.int
  • Beasley R, ISAAC Steering Committee. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. Lancet. 1998; 351(9111): 1225–32.
  • Paaso EM, Jaakkola MS, Lajunen TK, Hugg TT, Jaakkola JJ. The importance of family history in asthma during the first 27 years of life. Am J Respir Crit Care Med. 2013; 188(5): 624–6.
  • Subbarao P, Mandhane PJ, Sears MR. Asthma: epidemiology, etiology and risk factors. CMAJ. 2009; 181 (9): 181-90.
  • Slager RE, Hawkins GA, Li X, Postma DS, Meyers DA, Bleecker ER. Genetics of asthma susceptibility and severity. Clin Chest Med. 2012; 33 (3): 431-43
  • Aguilera AC, Dagher IA, Kloepfer KM. Role of the Microbiome in Allergic Disease Development. Curr Allergy Asthma Rep. 2020; 20 (9): 44.
  • Ver Heul A, Planer J, Kau AL. The Human Microbiota and Asthma. Clin Rev Allergy Immunol. 2019; 57 (3): 350-63.
  • Dimitri-Pinheiro S, Soares R, Barata P. The Microbiome of the Nose-Friend or Foe?. Allergy & Rhinology. 2020; 11: 1-10.
  • Brożek JL, Bousquet J, Agache I et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines-2016 revision. J Allergy Clin Immunol. 2017; 140 (4): 950-8.
  • Ginasthma.org [https://ginasthma.org/wp-content/uploads/2020/04/GINA-2020-full-report_-final-_wms.pdf]. Global Strategy For Asthma Management and Prevention. [Accessed 05.12.2020]. Avaible from: www.ginasthma.org
  • Naclerio RM, Meier HL, Adkinson NF Jr et al. In vivo demonstration of inflammatory mediator release following nasal challenge with antigen. Eur J Respir Dis Suppl. 1983; 128 (Pt 1): 26-32.
  • Iontorrent User Guide. Ion 16S™ Metagenomics Kit Catalog Number A26216 Publication Number MAN0010799 Revision C.0.
  • Teo SM, Mok D, Pham K et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015; 17 (5): 704-15.
  • Lappan R, Imbrogno K, Sikazwe C et al. A microbiome case-control study of recurrent acute otitis media identified potentially protective bacterial genera. BMC Microbiol. 2018; 18 (1):13.
  • Bogaert D, Keijser B, Huse S et al. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PLoS One. 2011; 6 (2): e17035.
  • Lappan R, Jamieson SE, Peacock CS. Reviewing the Pathogenic Potential of the Otitis-Associated Bacteria Alloiococcus otitidis and Turicella otitidis. Front Cell Infect Microbiol. 2020; 10: 51.
  • Bosch AATM, Levin E, van Houten MA et al. Development of Upper Respiratory Tract Microbiota in Infancy is Affected by Mode of Delivery. EBioMedicine. 2016; 9: 336-45.
  • Bosch AATM, de Steenhuijsen Piters WAA, van Houten MA et al. Maturation of the Infant Respiratory Microbiota, Environmental Drivers, and Health Consequences. A Prospective Cohort Study. Am J Respir Crit Care Med. 2017; 196 (12): 1582-90.
  • Brugger SD, Eslami SM, Pettigrew MM et al. Dolosigranulum pigrum Cooperation and Competition in Human Nasal Microbiota. mSphere. 2020; 5 (5).
  • Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017; 23 (3): 314-26.
  • Pérez-Losada M, Alamri L, Crandall KA, Freishtat RJ. Nasopharyngeal Microbiome Diversity Changes over Time in Children with Asthma. PLoS One. 2017; 12 (1).
  • McCauley K, Durack J, Valladares R et al. Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. J Allergy Clin Immunol. 2019; 144 (5): 1187–97.
  • Bisgaard H, Hermansen MN, Buchvald F et al. Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med. 2007; 357 (15): 1487–95.
  • Biesbroek G, Tsivtsivadze E, Sanders EA et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med. 2014; 190 (11): 1283–92.
  • Teo SM, Tang HHF, Mok D et al. Airway Microbiota Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in Childhood Respiratory Disease. Cell Host Microbe. 2018; 24 (3): 341–52.
  • Chun Y, Do A, Grishina G et al. Integrative study of the upper and lower airway microbiome and transcriptome in asthma. JCI Insight. 2020; 5 (5).
  • Kloepfer KM, Sarsani VK, Poroyko V et al. Community-acquired rhinovirus infection is associated with changes in the airway microbiome. J Allergy Clin Immunol. 2017; 140 (1): 312–5.
  • Lal D, Keim P, Delisle J et al. Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects. Int Forum Allergy Rhinol. 2017; 7 (6): 561–9.

Investigation of nasopharyngeal microbiota in children with asthma and allergic rhinitis comorbidity

Yıl 2022, Cilt: 61 Sayı: 3, 371 - 378, 12.09.2022
https://doi.org/10.19161/etd.1167440

Öz

Aim: The goal of this study was to compare the nasopharyngeal bacterial microbiota of healthy children with asthma and allergic rhinitis, identify potential microbial dysbiosis in patients.
Materials and Methods: The study included a total of 15 patients. There were five patients with asthma, five with allergic rhinitis, and five healthy controls. The upper respiratory tract microbiota were identified using 16S metagenomics analysis of nasal lavage samples.
Results: Firmucutes was the most prevalent phylum in the upper respiratory tract microbiota of asthma patients, while Proteobacteria were found in the healthy control and allergic rhinitis groups. Dolosigranulum was identified as the most dominant genus in the upper respiratory tract microbiota of asthma patients. Moraxella was the most prevalent genera in the upper respiratory tract microbiota of the healthy control group. When asthma patients were compared to the control group, the ratio of the Moraxella genus decreased while the ratios of Staphylococcus, Streptococcus, and Corynebacterium species increased.
Conclusion: In conclusion, it has not been determined that upper respiratory tract microbiota has a role in determining the pathogenesis of allergic rhinitis and asthma in childhood. The fact that there is a proportional difference between groups’ supports that there may be a possible difference if the entire airway microbiome is studied.

Kaynakça

  • Stiemsma LT, Turvey SE. Asthma and the microbiome: defining the critical window in early life. Allergy Asthma Clin Immunol. 2017; 13: 3.
  • Mallol J, Crane J, von Mutius E et al. The International study of asthma and allergies in childhood (ISAAC) phase three: a global synthesis. Allergol Immunopathol (Madr). 2013; 41 (2): 73–85.
  • Who.int [http://www.who.int/mediacentre/factsheets/fs307/en/]. World Health Organization: Asthma [Accessed 10 Sept 2016]. Available from: www.who.int
  • Beasley R, ISAAC Steering Committee. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. Lancet. 1998; 351(9111): 1225–32.
  • Paaso EM, Jaakkola MS, Lajunen TK, Hugg TT, Jaakkola JJ. The importance of family history in asthma during the first 27 years of life. Am J Respir Crit Care Med. 2013; 188(5): 624–6.
  • Subbarao P, Mandhane PJ, Sears MR. Asthma: epidemiology, etiology and risk factors. CMAJ. 2009; 181 (9): 181-90.
  • Slager RE, Hawkins GA, Li X, Postma DS, Meyers DA, Bleecker ER. Genetics of asthma susceptibility and severity. Clin Chest Med. 2012; 33 (3): 431-43
  • Aguilera AC, Dagher IA, Kloepfer KM. Role of the Microbiome in Allergic Disease Development. Curr Allergy Asthma Rep. 2020; 20 (9): 44.
  • Ver Heul A, Planer J, Kau AL. The Human Microbiota and Asthma. Clin Rev Allergy Immunol. 2019; 57 (3): 350-63.
  • Dimitri-Pinheiro S, Soares R, Barata P. The Microbiome of the Nose-Friend or Foe?. Allergy & Rhinology. 2020; 11: 1-10.
  • Brożek JL, Bousquet J, Agache I et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines-2016 revision. J Allergy Clin Immunol. 2017; 140 (4): 950-8.
  • Ginasthma.org [https://ginasthma.org/wp-content/uploads/2020/04/GINA-2020-full-report_-final-_wms.pdf]. Global Strategy For Asthma Management and Prevention. [Accessed 05.12.2020]. Avaible from: www.ginasthma.org
  • Naclerio RM, Meier HL, Adkinson NF Jr et al. In vivo demonstration of inflammatory mediator release following nasal challenge with antigen. Eur J Respir Dis Suppl. 1983; 128 (Pt 1): 26-32.
  • Iontorrent User Guide. Ion 16S™ Metagenomics Kit Catalog Number A26216 Publication Number MAN0010799 Revision C.0.
  • Teo SM, Mok D, Pham K et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015; 17 (5): 704-15.
  • Lappan R, Imbrogno K, Sikazwe C et al. A microbiome case-control study of recurrent acute otitis media identified potentially protective bacterial genera. BMC Microbiol. 2018; 18 (1):13.
  • Bogaert D, Keijser B, Huse S et al. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PLoS One. 2011; 6 (2): e17035.
  • Lappan R, Jamieson SE, Peacock CS. Reviewing the Pathogenic Potential of the Otitis-Associated Bacteria Alloiococcus otitidis and Turicella otitidis. Front Cell Infect Microbiol. 2020; 10: 51.
  • Bosch AATM, Levin E, van Houten MA et al. Development of Upper Respiratory Tract Microbiota in Infancy is Affected by Mode of Delivery. EBioMedicine. 2016; 9: 336-45.
  • Bosch AATM, de Steenhuijsen Piters WAA, van Houten MA et al. Maturation of the Infant Respiratory Microbiota, Environmental Drivers, and Health Consequences. A Prospective Cohort Study. Am J Respir Crit Care Med. 2017; 196 (12): 1582-90.
  • Brugger SD, Eslami SM, Pettigrew MM et al. Dolosigranulum pigrum Cooperation and Competition in Human Nasal Microbiota. mSphere. 2020; 5 (5).
  • Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017; 23 (3): 314-26.
  • Pérez-Losada M, Alamri L, Crandall KA, Freishtat RJ. Nasopharyngeal Microbiome Diversity Changes over Time in Children with Asthma. PLoS One. 2017; 12 (1).
  • McCauley K, Durack J, Valladares R et al. Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. J Allergy Clin Immunol. 2019; 144 (5): 1187–97.
  • Bisgaard H, Hermansen MN, Buchvald F et al. Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med. 2007; 357 (15): 1487–95.
  • Biesbroek G, Tsivtsivadze E, Sanders EA et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med. 2014; 190 (11): 1283–92.
  • Teo SM, Tang HHF, Mok D et al. Airway Microbiota Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in Childhood Respiratory Disease. Cell Host Microbe. 2018; 24 (3): 341–52.
  • Chun Y, Do A, Grishina G et al. Integrative study of the upper and lower airway microbiome and transcriptome in asthma. JCI Insight. 2020; 5 (5).
  • Kloepfer KM, Sarsani VK, Poroyko V et al. Community-acquired rhinovirus infection is associated with changes in the airway microbiome. J Allergy Clin Immunol. 2017; 140 (1): 312–5.
  • Lal D, Keim P, Delisle J et al. Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects. Int Forum Allergy Rhinol. 2017; 7 (6): 561–9.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Cengiz Çavuşoğlu 0000-0001-7152-5216

Hasan Yüksel 0000-0001-9577-8445

Adem Yaşar

Tarık İnci 0000-0002-5139-1262

Furkan Polat 0000-0003-4640-3991

Ayça Aydın Uysal 0000-0003-0192-7126

Ayça Aykut 0000-0002-1460-0053

Yayımlanma Tarihi 12 Eylül 2022
Gönderilme Tarihi 15 Eylül 2021
Yayımlandığı Sayı Yıl 2022Cilt: 61 Sayı: 3

Kaynak Göster

Vancouver Çavuşoğlu C, Yüksel H, Yaşar A, İnci T, Polat F, Aydın Uysal A, Aykut A. Astım ve alerjik rinit komorbiditesi olan çocuklarda nazofaringeal mikrobiyotanın araştırılması. ETD. 2022;61(3):371-8.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519