Araştırma Makalesi
BibTex RIS Kaynak Göster

Biyotransforme propolisin sağlıklı ve kolon kanseri hücre hatları üzerindeki sitotoksik

Yıl 2025, Cilt: 64 Sayı: 1, 77 - 91, 12.03.2025
https://doi.org/10.19161/etd.1524052

Öz

Amaç: Propolisin insan sağlığıyla ilgili birçok özelliği vardır: antioksidan, antimikrobiyal, antiseptik, antibakteriyel, anti inflamatuar, antimutajenik ve immün modülatör. Farklı kanserler üzerindeki olası etkileri bu özelliklerin öncelikleri arasındadır. Bu nedenle, bu çalışmada biyotransforme edilmiş propolis örneklerinin kolon kanseri hücreleri ve sağlıklı kolon epitel hücreleri üzerindeki karşılaştırmalı sitotoksik etkileri araştırılmıştır.
Gereç ve Yöntem: Farklı çözücüler (etanol; polietilen glikol - PEG; su) ve farklı ultrason işlemleri (300 W/40 kHz (5, 10 ve 15 dakika) kullanılarak yapılan ekstraksiyon prosedürüne başlamadan önce, propolis örneklerinin biyotransformasyonu üç farklı L. plantarum suşu (ISLG-2, ATCC-8014 ve Visbyvac) ile çeşitli konsantrasyonlarda (%1,5; %2,5; %3,5) gerçekleştirildi. Örneklerin fenolik profili sıvı kromatografisi-kütle spektrometrisi/kütle spektrometrisi (LCMS/MS) ile analiz edildi. Propolisin HCT-116 ve CCD-841 CoN hücreleri üzerindeki sitotoksik etkileri WST-8 yöntemi ile belirlendi.
Bulgular: En yüksek indirgeme ferulik asit için belirlenirken, en düşük indirgeme optimum koşullarda (300 W/40 kHz) su varlığında ultrasonik işlemler kullanılarak çözücü olarak etanol kullanılarak elde edildi. Propolis örneklerinin 24, 48 ve 72. saatlerde kolon kanseri hücre hattı (HCT-116) ve sağlıklı kolon epitel hücre hattı (CCD-841 CoN) üzerinde doza bağlı sitotoksik etkiler gösterdiği bulundu.
Sonuç: Propolis ekstraksiyon yönteminin ve biyotransformasyon reaksiyon tipinin kolon kanseri hücrelerinin sitotoksisitesi üzerindeki etki açısından çok önemlidir. Bu çalışmada biyotransforme edilmiş propolisin Sağlıklı hücrelere ciddi zarar vermeden kanserli hücreleri yok edebilen bu yöntemin kanser tedavisinde de kullanılabilecek potansiyele sahip olduğu ortaya çıkarılmıştır.

Kaynakça

  • Helvaci K, Eraslan E, Yildiz F, Tufan G, Demirci U, Berna Oksuzoglu O, et al. Comparison of clinicopathological and survival features of right and left colon cancers. J BUON [Internet]. 2019;24(5):1845– 51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31786846
  • Chen HY, Li GH, Tan GC, Liang H, Lai XH, Huang Q, et al. Dexmedetomidine enhances hypoxia-induced cancer cell progression. Exp Ther Med [Internet]. 2019 Dec;18(6):4820–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31772647
  • Mou L, Liang B, Liu G, Jiang J, Liu J, Zhou B, et al. Berbamine exerts anticancer effects on human colon cancer cells via induction of autophagy and apoptosis, inhibition of cell migration and MEK/ERK signalling pathway. J BUON [Internet]. 2019;24(5):1870–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31786849
  • Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nat Rev Dis Prim [Internet]. 2015 Nov 5;1(1):15065. Available from: https://www.nature.com/articles/nrdp201565
  • Pedonese F, Verani G, Torracca B, Turchi B, Felicioli A, Nuvoloni R. Effect of an Italian propolis on the growth of Listeria monocytogenes, Staphylococcus aureus and Bacillus cereus in milk and whey cheese. Ital J food Saf [Internet]. 2019 Dec 5;8(4):8036. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31897395
  • Kalkan Yıldırım H, Canbay E, Öztürk Ş, Aldemir O, Y Sözmen E. Biotransformation of propolis phenols by L. plantarum as a strategy for reduction of allergens. Food Sci Biotechnol [Internet]. 2018 Dec;27(6):1727–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30483437
  • Teixeira ÉW, Message D, Meira RMSA. Methacrylate: An alternative fixing agent for identifying the botanical origin of propolis. Appl Plant Sci [Internet]. 2019 Dec 8;7(12). Available from: https://bsapubs.onlinelibrary.wiley.com/doi/10.1002/aps3.11309
  • Farida S, Sahlan M, Rohmatin E, Adawiyah R. The beneficial effect of Indonesian propolis wax from Tetragonula sp. as a therapy in limited vaginal candidiasis patients. Saudi J Biol Sci [Internet]. 2020 Jan;27(1):142–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1319562X1930110X
  • Ahn M, Kunimasa K, Kumazawa S, Nakayama T, Kaji K, Uto Y, et al. Correlation between antiangiogenic activity and antioxidant activity of various components from propolis. Mol Nutr Food Res [Internet]. 2009 May 7;53(5):643–51. Available from: https://onlinelibrary.wiley.com/doi/10.1002/mnfr.200800021
  • Borrelli F, Maffia P, Pinto L, Ianaro A, Russo A, Capasso F, et al. Phytochemical compounds involved in the anti-inflammatory effect of propolis extract. Fitoterapia [Internet]. 2002 Nov;73:S53–63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0367326X02001910
  • Carvalho AA, Finger D, Machado CS, Schmidt EM, Costa PM da, Alves APNN, et al. In vivo antitumoural activity and composition of an oil extract of Brazilian propolis. Food Chem [Internet]. 2011 Jun;126(3):1239– 45. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814610016444
  • de Mendonça ICG, Porto ICC de M, do Nascimento TG, de Souza NS, Oliveira JM dos S, Arruda RE dos S, et al. Brazilian red propolis: phytochemical screening, antioxidant activity and effect against cancer cells. BMC Complement Altern Med [Internet]. 2015 Dec 14;15(1):357. Available from: http://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-015-0888-9
  • Girgin G, Baydar T, Ledochowski M, Schennach H, Bolukbasi DN, Sorkun K, et al. Immunomodulatory effects of Turkish propolis: Changes in neopterin release and tryptophan degradation. Immunobiology [Internet]. 2009 Feb;214(2):129–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0171298508000673
  • Li F, Awale S, Tezuka Y, Kadota S. Cytotoxic constituents from Brazilian red propolis and their structure– activity relationship. Bioorg Med Chem [Internet]. 2008 May;16(10):5434–40. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0968089608003295
  • Patel S. Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents. J Diet Suppl [Internet]. 2016 May 3;13(3):245–68. Available from: http://www.tandfonline.com/doi/full/10.3109/19390211.2015.1008614
  • Sawicka D, Car H, Borawska MH, Nikliński J. The anticancer activity of propolis. Folia Histochem Cytobiol [Internet]. 2012 Apr 24;50(1):25–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22532133
  • Wagh VD. Propolis: a wonder bees product and its pharmacological potentials. Adv Pharmacol Sci [Internet]. 2013;2013:308249. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24382957
  • Woo KJ, Jeong Y-J, Inoue H, Park J-W, Kwon TK. Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity. FEBS Lett [Internet]. 2005 Jan 31;579(3):705–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15670832
  • de Groot AC. Propolis. Dermatitis [Internet]. 2013 Nov;24(6):263–82. Available from: https://pubmed.ncbi.nlm.nih.gov/24201459/
  • BasistaSołtys K. Allergy to Propolis in Beekeepers-A Literature Review. Occup Med Heal Aff. 2013;01(01):8– 11.
  • Gardana C, Barbieri A, Simonetti P, Guglielmetti S. Biotransformation strategy to reduce allergens in propolis. Appl Environ Microbiol [Internet]. 2012 Jul;78(13):4654–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22522681
  • Aldemir O, Yildirim HK, Sözmen EY. Antioxidant and anti-inflammatory effects of biotechnologically transformed propolis. J Food Process Preserv [Internet]. 2018 Jun;42(6):e13642. Available from: https://onlinelibrary.wiley.com/doi/10.1111/jfpp.13642
  • Rodríguez H, Curiel JA, Landete JM, de las Rivas B, López de Felipe F, Gómez-Cordovés C, et al. Food phenolics and lactic acid bacteria. Int J Food Microbiol [Internet]. 2009 Jun 30;132(2–3):79–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19419788
  • Ishihara M, Naoi K, Hashita M, Itoh Y, Suzui M. Growth inhibitory activity of ethanol extracts of Chinese and Brazilian propolis in four human colon carcinoma cell lines. Oncol Rep [Internet]. 2009 Aug;22(2):349–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19578776
  • Calhelha RC, Falcão S, Queiroz MJRP, Vilas-Boas M, Ferreira ICFR. Cytotoxicity of Portuguese propolis: the proximity of the in vitro doses for tumor and normal cell lines. Biomed Res Int [Internet]. 2014;2014:897361. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24982911
  • Sadeghi Ekbatan S, Li X-Q, Ghorbani M, Azadi B, Kubow S. Chlorogenic Acid and Its Microbial Metabolites Exert Anti-Proliferative Effects, S-Phase Cell-Cycle Arrest and Apoptosis in Human Colon Cancer Caco-2 Cells. Int J Mol Sci [Internet]. 2018 Mar 3;19(3):723. Available from: http://www.mdpi.com/1422-0067/19/3/723
  • Pratsinis H, Kletsas D, Melliou E, Chinou I. Antiproliferative activity of Greek propolis. J Med Food [Internet]. 2010 Apr;13(2):286–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20132046
  • Borges KS, Brassesco MS, Scrideli CA, Soares AEE, Tone LG. Antiproliferative effects of Tubi-bee propolis in glioblastoma cell lines. Genet Mol Biol [Internet]. 2011;34(2):310–4. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572011000200024&lng=en&tlng=en
  • H. Kalkan Yıldırım, E. Dündar, E. Canbay, H.Memmedov EYS. Propolisteki fenolik içeriklere coğrafi orijinin etkileri. In: International Agriculture, Environment and Health Congress. 2018. p. 816–27.
  • Dündar, Ezgi; Kalkan Yıldırım H. Propolisin Çeşitliliğine Etki Eden Faktörler. J Apic Res. 2018;10(2):61–6.
  • Molnár S, Mikuska K, Patonay K, Sisa K, Daood HG, Némedi E, et al. Comparative studies on polyphenolic profile and antimicrobial activity of propolis samples selected from distinctive geographical areas of Hungary. Food Sci Technol Int [Internet]. 2017 Jun;23(4):349–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28595483
  • Christina D, Hermansyah H, Wijanarko A, Rohmatin E, Sahlan M, Pratami DK, et al. Selection of propolis Tetragonula sp. extract solvent with flavonoids and polyphenols concentration and antioxidant activity parameters. In 2018. p. 030020. Available from: https://pubs.aip.org/aip/acp/article/791669
  • Kubiliene L, Laugaliene V, Pavilonis A, Maruska A, Majiene D, Barcauskaite K, et al. Alternative preparation of propolis extracts: comparison of their composition and biological activities. BMC Complement Altern Med [Internet]. 2015 May 27;15:156. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26012348
  • Kubiliene L, Jekabsone A, Zilius M, Trumbeckaite S, Simanaviciute D, Gerbutaviciene R, et al. Comparison of aqueous, polyethylene glycol-aqueous and ethanolic propolis extracts: antioxidant and mitochondria modulating properties. BMC Complement Altern Med [Internet]. 2018 May 23;18(1):165. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29792194
  • Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules [Internet]. 2019 Jun 19;24(12). Available from: http://www.ncbi.nlm.nih.gov/pubmed/31248102
  • HUANG W-W, TSAI S-C, PENG S-F, LIN M-W, CHIANG J-H, CHIU Y-J, et al. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int J Oncol [Internet]. 2013 Jun;42(6):2069–77. Available from: https://www.spandidos-publications.com/10.3892/ijo.2013.1909
  • Kim S-H, Choi K-C. Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models. Toxicol Res [Internet]. 2013 Dec 31;29(4):229–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24578792
  • Sezer ED, Oktay LM, Karadadaş E, Memmedov H, Selvi Gunel N, Sözmen E. Assessing Anticancer Potential of Blueberry Flavonoids, Quercetin, Kaempferol, and Gentisic Acid, Through Oxidative Stress and Apoptosis Parameters on HCT-116 Cells. J Med Food [Internet]. 2019 Nov 1;22(11):1118–26. Available from: https://www.liebertpub.com/doi/10.1089/jmf.2019.0098
  • Kim ME, Ha TK, Yoon JH, Lee JS. Myricetin induces cell death of human colon cancer cells via BAX/BCL2- dependent pathway. Anticancer Res [Internet]. 2014 Feb;34(2):701–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24511002
  • Ma L, Cao X, Wang H, Lu K, Wang Y, Tu C, et al. Discovery of Myricetin as a Potent Inhibitor of Human Flap Endonuclease 1, Which Potentially Can Be Used as Sensitizing Agent against HT-29 Human Colon Cancer Cells. J Agric Food Chem [Internet]. 2019 Feb 13;67(6):1656–65. Available from: https://pubs.acs.org/doi/10.1021/acs.jafc.8b05447
  • Wang F, Song Z-Y, Qu X-J, Li F, Zhang L, Li W-B, et al. M10, a novel derivative of Myricetin, prevents ulcerative colitis and colorectal tumor through attenuating robust endoplasmic reticulum stress. Carcinogenesis [Internet]. 2018 Jul 3;39(7):889–99. Available from: https://academic.oup.com/carcin/article/39/7/889/4994951
  • Veeriah S, Kautenburger T, Habermann N, Sauer J, Dietrich H, Will F, et al. Apple flavonoids inhibit growth of HT29 human colon cancer cells and modulate expression of genes involved in the biotransformation of xenobiotics. Mol Carcinog [Internet]. 2006 Mar 20;45(3):164–74. Available from: https://onlinelibrary.wiley.com/doi/10.1002/mc.20158
  • Glei M, Kirmse A, Habermann N, Persin C, Pool-Zobel BL. Bread Enriched With Green Coffee Extract Has Chemoprotective and Antigenotoxic Activities in Human Cells. Nutr Cancer [Internet]. 2006 Nov;56(2):182–92. Available from: http://www.tandfonline.com/doi/abs/10.1207/s15327914nc5602_9
  • LIU Y-J, ZHOU C-Y, QIU C-H, LU X-M, WANG Y-T. Chlorogenic acid induced apoptosis and inhibition of proliferation in human acute promyelocytic leukemia HL-60 cells. Mol Med Rep [Internet]. 2013 Oct;8(4):1106–10. Available from: https://www.spandidos-publications.com/10.3892/mmr.2013.1652
  • Hou N, Liu N, Han J, Yan Y, Li J. Chlorogenic acid induces reactive oxygen species generation and inhibits the viability of human colon cancer cells. Anticancer Drugs [Internet]. 2017 Jan;28(1):59–65. Available from: https://journals.lww.com/00001813-201701000-00006
  • Matsunaga K, Katayama M, Sakata K, Kuno T, Yoshida K, Yamada Y, et al. Inhibitory Effects of Chlorogenic Acid on Azoxymethane-induced Colon Carcinogenesis in Male F344 Rats. Asian Pac J Cancer Prev [Internet]. 2002;3(2):163–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12718596
  • Koyuncu I. Evaluation of anticancer, antioxidant activity and phenolic compounds of Artemisia absinthium L. Extract. Cell Mol Biol [Internet]. 2018 Feb 28;64(3):25–34. Available from: https://cellmolbiol.org/index.php/CMB/article/view/1887
  • Wang X, Liu J, Xie Z, Rao J, Xu G, Huang K, et al. Chlorogenic acid inhibits proliferation and induces apoptosis in A498 human kidney cancer cells via inactivating PI3K/Akt/mTOR signalling pathway. J Pharm Pharmacol [Internet]. 2019 Jun 7;71(7):1100–9. Available from: https://academic.oup.com/jpp/article/71/7/1100-1109/6122132

The cytotoxic effects of bio-transformed propolis on healthy and colon cancer cell lines

Yıl 2025, Cilt: 64 Sayı: 1, 77 - 91, 12.03.2025
https://doi.org/10.19161/etd.1524052

Öz

Aim: Propolis has a lot of properties related to human health: antioxidant, antimicrobial, antiseptic, antibacterial, anti-inflammatory, antimutagenic, and immunomodulating. Its possible effects on different cancers are among the priorities of these properties. In this study, the comparative cytotoxic effects of bio-transformed propolis samples on colon cancer cells and healthy colon epithelium cells were investigated.
Materials and Methods: Lactobacillus plantarum strains used in this study are based on their well-documented ability to metabolize phenolic compounds during fermentation, effectively modifying their structure and activity. These strains exhibit cinnamoyl esterase activity, which is critical for reducing allergenic compounds such as DMEA and CAPE in propolis. Additionally, L. plantarum is widely utilized in biotransformation processes due to its safety, adaptability, and efficiency in enhancing the bioactive properties of natural products, making it an ideal candidate for optimizing the cytotoxic potential of propolis against colon cancer cells.
Results: The highest reduction was determined for ferulic acid, and the lowest reduction was obtained by using ethanol as a solvent using ultrasound treatments in the presence of water at optimal conditions (300 W/40 kHz). It was found that propolis samples showed dose-dependent cytotoxic effects on the colon cancer cell line (HCT-116) and healthy colon epithelium cell line (CCD-841 CoN) at 24, 48, and 72 hours.
Conclusion: Our results show that the method of propolis extraction, and the type of biotransformation reaction are very important in terms of effect on the cytotoxicity of colon cancer cells. Consequently, in this study, the demonstration of the bio-transformed propolis to have the ability to destroy cancerous cells without causing severe damage to healthy cells reveals that it can have the potential that can be used in cancer treatment.

Kaynakça

  • Helvaci K, Eraslan E, Yildiz F, Tufan G, Demirci U, Berna Oksuzoglu O, et al. Comparison of clinicopathological and survival features of right and left colon cancers. J BUON [Internet]. 2019;24(5):1845– 51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31786846
  • Chen HY, Li GH, Tan GC, Liang H, Lai XH, Huang Q, et al. Dexmedetomidine enhances hypoxia-induced cancer cell progression. Exp Ther Med [Internet]. 2019 Dec;18(6):4820–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31772647
  • Mou L, Liang B, Liu G, Jiang J, Liu J, Zhou B, et al. Berbamine exerts anticancer effects on human colon cancer cells via induction of autophagy and apoptosis, inhibition of cell migration and MEK/ERK signalling pathway. J BUON [Internet]. 2019;24(5):1870–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31786849
  • Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nat Rev Dis Prim [Internet]. 2015 Nov 5;1(1):15065. Available from: https://www.nature.com/articles/nrdp201565
  • Pedonese F, Verani G, Torracca B, Turchi B, Felicioli A, Nuvoloni R. Effect of an Italian propolis on the growth of Listeria monocytogenes, Staphylococcus aureus and Bacillus cereus in milk and whey cheese. Ital J food Saf [Internet]. 2019 Dec 5;8(4):8036. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31897395
  • Kalkan Yıldırım H, Canbay E, Öztürk Ş, Aldemir O, Y Sözmen E. Biotransformation of propolis phenols by L. plantarum as a strategy for reduction of allergens. Food Sci Biotechnol [Internet]. 2018 Dec;27(6):1727–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30483437
  • Teixeira ÉW, Message D, Meira RMSA. Methacrylate: An alternative fixing agent for identifying the botanical origin of propolis. Appl Plant Sci [Internet]. 2019 Dec 8;7(12). Available from: https://bsapubs.onlinelibrary.wiley.com/doi/10.1002/aps3.11309
  • Farida S, Sahlan M, Rohmatin E, Adawiyah R. The beneficial effect of Indonesian propolis wax from Tetragonula sp. as a therapy in limited vaginal candidiasis patients. Saudi J Biol Sci [Internet]. 2020 Jan;27(1):142–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1319562X1930110X
  • Ahn M, Kunimasa K, Kumazawa S, Nakayama T, Kaji K, Uto Y, et al. Correlation between antiangiogenic activity and antioxidant activity of various components from propolis. Mol Nutr Food Res [Internet]. 2009 May 7;53(5):643–51. Available from: https://onlinelibrary.wiley.com/doi/10.1002/mnfr.200800021
  • Borrelli F, Maffia P, Pinto L, Ianaro A, Russo A, Capasso F, et al. Phytochemical compounds involved in the anti-inflammatory effect of propolis extract. Fitoterapia [Internet]. 2002 Nov;73:S53–63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0367326X02001910
  • Carvalho AA, Finger D, Machado CS, Schmidt EM, Costa PM da, Alves APNN, et al. In vivo antitumoural activity and composition of an oil extract of Brazilian propolis. Food Chem [Internet]. 2011 Jun;126(3):1239– 45. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814610016444
  • de Mendonça ICG, Porto ICC de M, do Nascimento TG, de Souza NS, Oliveira JM dos S, Arruda RE dos S, et al. Brazilian red propolis: phytochemical screening, antioxidant activity and effect against cancer cells. BMC Complement Altern Med [Internet]. 2015 Dec 14;15(1):357. Available from: http://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-015-0888-9
  • Girgin G, Baydar T, Ledochowski M, Schennach H, Bolukbasi DN, Sorkun K, et al. Immunomodulatory effects of Turkish propolis: Changes in neopterin release and tryptophan degradation. Immunobiology [Internet]. 2009 Feb;214(2):129–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0171298508000673
  • Li F, Awale S, Tezuka Y, Kadota S. Cytotoxic constituents from Brazilian red propolis and their structure– activity relationship. Bioorg Med Chem [Internet]. 2008 May;16(10):5434–40. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0968089608003295
  • Patel S. Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents. J Diet Suppl [Internet]. 2016 May 3;13(3):245–68. Available from: http://www.tandfonline.com/doi/full/10.3109/19390211.2015.1008614
  • Sawicka D, Car H, Borawska MH, Nikliński J. The anticancer activity of propolis. Folia Histochem Cytobiol [Internet]. 2012 Apr 24;50(1):25–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22532133
  • Wagh VD. Propolis: a wonder bees product and its pharmacological potentials. Adv Pharmacol Sci [Internet]. 2013;2013:308249. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24382957
  • Woo KJ, Jeong Y-J, Inoue H, Park J-W, Kwon TK. Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity. FEBS Lett [Internet]. 2005 Jan 31;579(3):705–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15670832
  • de Groot AC. Propolis. Dermatitis [Internet]. 2013 Nov;24(6):263–82. Available from: https://pubmed.ncbi.nlm.nih.gov/24201459/
  • BasistaSołtys K. Allergy to Propolis in Beekeepers-A Literature Review. Occup Med Heal Aff. 2013;01(01):8– 11.
  • Gardana C, Barbieri A, Simonetti P, Guglielmetti S. Biotransformation strategy to reduce allergens in propolis. Appl Environ Microbiol [Internet]. 2012 Jul;78(13):4654–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22522681
  • Aldemir O, Yildirim HK, Sözmen EY. Antioxidant and anti-inflammatory effects of biotechnologically transformed propolis. J Food Process Preserv [Internet]. 2018 Jun;42(6):e13642. Available from: https://onlinelibrary.wiley.com/doi/10.1111/jfpp.13642
  • Rodríguez H, Curiel JA, Landete JM, de las Rivas B, López de Felipe F, Gómez-Cordovés C, et al. Food phenolics and lactic acid bacteria. Int J Food Microbiol [Internet]. 2009 Jun 30;132(2–3):79–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19419788
  • Ishihara M, Naoi K, Hashita M, Itoh Y, Suzui M. Growth inhibitory activity of ethanol extracts of Chinese and Brazilian propolis in four human colon carcinoma cell lines. Oncol Rep [Internet]. 2009 Aug;22(2):349–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19578776
  • Calhelha RC, Falcão S, Queiroz MJRP, Vilas-Boas M, Ferreira ICFR. Cytotoxicity of Portuguese propolis: the proximity of the in vitro doses for tumor and normal cell lines. Biomed Res Int [Internet]. 2014;2014:897361. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24982911
  • Sadeghi Ekbatan S, Li X-Q, Ghorbani M, Azadi B, Kubow S. Chlorogenic Acid and Its Microbial Metabolites Exert Anti-Proliferative Effects, S-Phase Cell-Cycle Arrest and Apoptosis in Human Colon Cancer Caco-2 Cells. Int J Mol Sci [Internet]. 2018 Mar 3;19(3):723. Available from: http://www.mdpi.com/1422-0067/19/3/723
  • Pratsinis H, Kletsas D, Melliou E, Chinou I. Antiproliferative activity of Greek propolis. J Med Food [Internet]. 2010 Apr;13(2):286–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20132046
  • Borges KS, Brassesco MS, Scrideli CA, Soares AEE, Tone LG. Antiproliferative effects of Tubi-bee propolis in glioblastoma cell lines. Genet Mol Biol [Internet]. 2011;34(2):310–4. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572011000200024&lng=en&tlng=en
  • H. Kalkan Yıldırım, E. Dündar, E. Canbay, H.Memmedov EYS. Propolisteki fenolik içeriklere coğrafi orijinin etkileri. In: International Agriculture, Environment and Health Congress. 2018. p. 816–27.
  • Dündar, Ezgi; Kalkan Yıldırım H. Propolisin Çeşitliliğine Etki Eden Faktörler. J Apic Res. 2018;10(2):61–6.
  • Molnár S, Mikuska K, Patonay K, Sisa K, Daood HG, Némedi E, et al. Comparative studies on polyphenolic profile and antimicrobial activity of propolis samples selected from distinctive geographical areas of Hungary. Food Sci Technol Int [Internet]. 2017 Jun;23(4):349–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28595483
  • Christina D, Hermansyah H, Wijanarko A, Rohmatin E, Sahlan M, Pratami DK, et al. Selection of propolis Tetragonula sp. extract solvent with flavonoids and polyphenols concentration and antioxidant activity parameters. In 2018. p. 030020. Available from: https://pubs.aip.org/aip/acp/article/791669
  • Kubiliene L, Laugaliene V, Pavilonis A, Maruska A, Majiene D, Barcauskaite K, et al. Alternative preparation of propolis extracts: comparison of their composition and biological activities. BMC Complement Altern Med [Internet]. 2015 May 27;15:156. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26012348
  • Kubiliene L, Jekabsone A, Zilius M, Trumbeckaite S, Simanaviciute D, Gerbutaviciene R, et al. Comparison of aqueous, polyethylene glycol-aqueous and ethanolic propolis extracts: antioxidant and mitochondria modulating properties. BMC Complement Altern Med [Internet]. 2018 May 23;18(1):165. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29792194
  • Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules [Internet]. 2019 Jun 19;24(12). Available from: http://www.ncbi.nlm.nih.gov/pubmed/31248102
  • HUANG W-W, TSAI S-C, PENG S-F, LIN M-W, CHIANG J-H, CHIU Y-J, et al. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int J Oncol [Internet]. 2013 Jun;42(6):2069–77. Available from: https://www.spandidos-publications.com/10.3892/ijo.2013.1909
  • Kim S-H, Choi K-C. Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models. Toxicol Res [Internet]. 2013 Dec 31;29(4):229–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24578792
  • Sezer ED, Oktay LM, Karadadaş E, Memmedov H, Selvi Gunel N, Sözmen E. Assessing Anticancer Potential of Blueberry Flavonoids, Quercetin, Kaempferol, and Gentisic Acid, Through Oxidative Stress and Apoptosis Parameters on HCT-116 Cells. J Med Food [Internet]. 2019 Nov 1;22(11):1118–26. Available from: https://www.liebertpub.com/doi/10.1089/jmf.2019.0098
  • Kim ME, Ha TK, Yoon JH, Lee JS. Myricetin induces cell death of human colon cancer cells via BAX/BCL2- dependent pathway. Anticancer Res [Internet]. 2014 Feb;34(2):701–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24511002
  • Ma L, Cao X, Wang H, Lu K, Wang Y, Tu C, et al. Discovery of Myricetin as a Potent Inhibitor of Human Flap Endonuclease 1, Which Potentially Can Be Used as Sensitizing Agent against HT-29 Human Colon Cancer Cells. J Agric Food Chem [Internet]. 2019 Feb 13;67(6):1656–65. Available from: https://pubs.acs.org/doi/10.1021/acs.jafc.8b05447
  • Wang F, Song Z-Y, Qu X-J, Li F, Zhang L, Li W-B, et al. M10, a novel derivative of Myricetin, prevents ulcerative colitis and colorectal tumor through attenuating robust endoplasmic reticulum stress. Carcinogenesis [Internet]. 2018 Jul 3;39(7):889–99. Available from: https://academic.oup.com/carcin/article/39/7/889/4994951
  • Veeriah S, Kautenburger T, Habermann N, Sauer J, Dietrich H, Will F, et al. Apple flavonoids inhibit growth of HT29 human colon cancer cells and modulate expression of genes involved in the biotransformation of xenobiotics. Mol Carcinog [Internet]. 2006 Mar 20;45(3):164–74. Available from: https://onlinelibrary.wiley.com/doi/10.1002/mc.20158
  • Glei M, Kirmse A, Habermann N, Persin C, Pool-Zobel BL. Bread Enriched With Green Coffee Extract Has Chemoprotective and Antigenotoxic Activities in Human Cells. Nutr Cancer [Internet]. 2006 Nov;56(2):182–92. Available from: http://www.tandfonline.com/doi/abs/10.1207/s15327914nc5602_9
  • LIU Y-J, ZHOU C-Y, QIU C-H, LU X-M, WANG Y-T. Chlorogenic acid induced apoptosis and inhibition of proliferation in human acute promyelocytic leukemia HL-60 cells. Mol Med Rep [Internet]. 2013 Oct;8(4):1106–10. Available from: https://www.spandidos-publications.com/10.3892/mmr.2013.1652
  • Hou N, Liu N, Han J, Yan Y, Li J. Chlorogenic acid induces reactive oxygen species generation and inhibits the viability of human colon cancer cells. Anticancer Drugs [Internet]. 2017 Jan;28(1):59–65. Available from: https://journals.lww.com/00001813-201701000-00006
  • Matsunaga K, Katayama M, Sakata K, Kuno T, Yoshida K, Yamada Y, et al. Inhibitory Effects of Chlorogenic Acid on Azoxymethane-induced Colon Carcinogenesis in Male F344 Rats. Asian Pac J Cancer Prev [Internet]. 2002;3(2):163–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12718596
  • Koyuncu I. Evaluation of anticancer, antioxidant activity and phenolic compounds of Artemisia absinthium L. Extract. Cell Mol Biol [Internet]. 2018 Feb 28;64(3):25–34. Available from: https://cellmolbiol.org/index.php/CMB/article/view/1887
  • Wang X, Liu J, Xie Z, Rao J, Xu G, Huang K, et al. Chlorogenic acid inhibits proliferation and induces apoptosis in A498 human kidney cancer cells via inactivating PI3K/Akt/mTOR signalling pathway. J Pharm Pharmacol [Internet]. 2019 Jun 7;71(7):1100–9. Available from: https://academic.oup.com/jpp/article/71/7/1100-1109/6122132
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kanser Hücre Biyolojisi
Bölüm Araştırma Makaleleri
Yazarlar

Nur Selvi Günel 0000-0003-0612-2263

Latife Merve Oktay Çelebi

Hikmet Memmedov

Burak Durmaz

Hatice Kalkan Yıldırım

Eser Yıldırım Sözmen

Yayımlanma Tarihi 12 Mart 2025
Gönderilme Tarihi 21 Ekim 2024
Kabul Tarihi 6 Aralık 2024
Yayımlandığı Sayı Yıl 2025Cilt: 64 Sayı: 1

Kaynak Göster

Vancouver Selvi Günel N, Oktay Çelebi LM, Memmedov H, Durmaz B, Kalkan Yıldırım H, Yıldırım Sözmen E. The cytotoxic effects of bio-transformed propolis on healthy and colon cancer cell lines. ETD. 2025;64(1):77-91.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519