Research Article
BibTex RIS Cite

Jinekolojik endokaviter brakiterapi uygulamalarında bilgisayarlı planlama ve TLD dozimetrisi ölçümlerinin karşılaştırılması

Year 2024, Volume: 63 Issue: 2, 249 - 260, 10.06.2024
https://doi.org/10.19161/etd.1315183

Abstract

Amaç: Opere/inopere serviks ve endometrium kanserli hastaların endokaviter brakiterapi tedavisinde rektum ve mesane dozlarının dozimetrik değerlendirilmesidir.
Gereç ve Yöntem:10 inopere, 12 opere serviks ve endometrium kanserli hastaların endokaviter brakiterapi tedavilerinde rektumdaki dozları ölçmek için, thermolüminisans dozimetre (TLD) içeren rektal prob yerleştirildi. Mesane dozlarını belirlemek için mesane boynuna foley sonda (balon) ve tabanına bir zincir yerleştirildi. Hastaların simülatörde çekilen radyografileri üzerinde aplikatör noktaları, vajen, mesane ve rektum noktaları belirlenip brakiterapi tedavi planlama sisteminde doz dağılımları hesaplatıldı. Rektumda 4 noktada hesaplanan ve TLD ile ölçülen dozlar yüzde fark olarak karşılaştırıldı. Mesane boynundaki doz, tabanındaki en yüksek doz ile istatistiksel olarak karşılaştırıldı.
Bulgular: Rektum için, opere ve inopere hastalarda iki teknik arasındaki farklar; sırasıyla, maksimum %17,68 ve %17,96, minimum %0,38 ve %0,20, ortalama R1: %5,62, R2: %4,22, R3: %5,96, R4: %7,58 ve R1: %6,73, R2: %4,36, R3: %4,34, R4: %7,53 olarak belirlendi. Mesane boynu ile tabanındaki maksimum doz noktası arasındaki fark opere hastalarda anlamlı (p=0,0037) iken, inopere hastalarda anlamsız bulundu (p=0,3863).
Sonuç: Rektumda hesaplanan ile ölçülen dozlar arasındaki fark klinik açıdan önemli değildir. Rektal komplikasyonlar için dozlar birçok noktada belirlenmelidir. Mesane boynunda belirlenen doz mesane komplikasyonları için yeterli değildir, mesane tabanında da dozlar belirlenmelidir.

Supporting Institution

---

Project Number

---

Thanks

Sayın Editör, Bu araştırma makalesini değerlendirdiğiniz için teşekkür ederiz.

References

  • Delclos L, Flectcher GH. Gynecolog Cancer. In:Levitt SH, Tapley N (eds). Technological Basis of Radiation Therapy: Practical Clinical Applications. 1st ed. Philadelphia: Lea & Febiga; 1992:263-88.
  • Dobbs J,Barret A, Ash D. Cervix Uteri and Corpus Uteri. In: Dobbs J, Barrett A (eds). Practical Radiotherapy Planning. 2nd ed. Melbourne: A division of Holder & Stoughon;1992:241-56.
  • Nag S, Scruggs GR. Clinical Aspects and Applications of High–Dose-Rate Brachytherapy. In: Halperin EC, Wazer DE, Perez CA, Brady LW (eds). Principles and Practice of Radiation Oncology. 6th ed. Philadelphia: Lippincott Williams &Wilkins; 2013:507-24.
  • Kapp KS, Stuecklschweiger GF, Kapp DS, Hackl AG. Dosimetry of intracavitary placement for uterine and cervical carcinoma: Results of orthogonal film, TLD, and CT-assisted techniques. Radiother Oncol 1992;24(3):137-46.
  • Lahtinen T, Tenhunen M, Väyrynen M. ICRU reference points and maximum doses of rectum and bladder in intracavitary radiotherapy. Radiother Oncol 1993;28(2):174-6.
  • Montana GS, Fowler WC. Carcinoma of the cervix: Analysis of bladder and rectal radiation dose and complications. Int J Radiat Oncol Biol Phys 1989;16(1):95-100.
  • Kapp KS, Stuecklschweiger GF, Kapp DS, Poschauko J, Pickel H, Hackl A. Carcinoma of the cervix: Analysis of complications after primary external beam radiation and IR-192 HDR brachytherapy. Radiother Oncol.1997;42(2):143-53.
  • Terhima T, Chatani M, Hata K, Inoue T. High-Dose Rate intracavitary therapy for carcinoma of the uterine cervix: II. Risk factors for rectal complication. Int J Radiat Oncol Biol Phys 1988;14(2):281-6.
  • Nair MT, Cheng MC, Barker A, Rouse BS. High dose rate (HDR) brachyterapy technique: for carcinoma of uterine-cervix using Nucletron applicators. Med Dosim 1995;20(3):201-7.
  • Khan FM, Gibbons JP. Low-dose-rate brachytherapy: Rules of implantation and dose specification. In: Khan FM, Gibbons JP (eds). The Physics of Radiation Therapy. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2014:309-47.
  • Bahadur YA, Constantinescu C, Hassouna AH, Eltaher MM, Ghassal NM, Awad NA. Single versus multichannel applicator in high-dose-rate vaginal brachytherapy optimized by inverse treatment planning. J Contemp Brachytherapy 2015;6(4):362–70.
  • Romanyukha A, Carrara M, Mazzeo D, Tenconi C, Al-Salmani T, Poder J, et al. An innovative gynecological HDR brachytherapy applicator system for treatment delivery and real-time verification. Phys Med 2019;59:151-7.
  • Kemikler G. Brakiterapi (BT) Fiziği. In: Becerir HB, Alkaya F (eds). Radyoterapi Fiziği. 1. Baskı. Ankara:Nobel yayın; 2020:797-818.
  • Fonseca GP, Johansen JG, Smith RL, Beaulieu L, Beddarf S, Kertzscher G, et al. In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice. Phys Imaging Radiat Oncol 2020;16(1-51):1-11.
  • Houlihan OA, Workman G, Hounsell AR, Prise KM, Jain S. In vivo dosimetry in pelvic brachytherapy. Br j Radiol 2022;95 (1137):20220046.
  • Fowler SF, Stitt JA. High dose rate afterloading: how many fractions for gynaecological treatments? Activity 1991;5:135-6.
  • Khan FM, Gibbons JP. High-Dose-Rate Brachytherapy. In: Khan FM, Gibbons JP (eds). The Physics of Radiation Therapy. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2014:475-90.
  • Hanks GE, Herring DF, Kramer S. Patterns of care outcome studies. Results of the rational practice in cancer of the cervix. Cancer 1983;51(5):959-67.
  • Orton CG, Wolf-Rosenblum S. Dose dependence of complication rates in cervix cancer radiotherapy. Int J Radiot Oncol Biol Phys 1986;12(1):37-44.
  • Stryker JA, Barthdomew M, Velkley DE, Cunningham DE, Mortel R, Craycraft G. et al. Bladder and rectal complications following radiotherapy for cervix. Gynecol Oncol 1988;29(1):1-11.
  • ICRU Report 38. Dose and Volume Specifications for Reporting Intracavitary Therapy in Gynecology. Bethesda, Maryland, USA: International Commission on Radiation Units and Measurements; 1985:1-23.
  • Deshpande DD, Shrivastav SK, Pradhan AS, Viswanathan PS, Dinshaw KA. Dosimetry of intracavitary applications in carcinoma of the cervix:rectal dose analysis. Radiother Oncol 1997;42(2):163-6.
  • Sun LM, Huang EY, Ko SF, Wang CJ, Leung SW, Lin H, et al. Computer tomography-assisted three dimensional technique to assess rectal and bladder wall dose in intracavitary brachytherapy for uterine cervical cancer. Radiother Oncol 2004;71(3):333-7.
  • Kim RY, Shen S, Duan J. Image-based three dimensional treatment planning of intracavitary brachytherapy for cancer of the cervix: Dose-volume histograms of the bladder, rectum, sigmoid colon and small bowel. Brachytherapy 2007;6(3):187-94.
  • Ju SG, Huh SJ, Shin JS, Park W, Nam H, Bae S et. al. Different effects of bladder distention on pint A-based and 3D-conformal intracavitary brachytherapy planning for cervical cancer. Radiat Res 2013;54(2):349-56.
  • Srivastava S, Painuly NK, Mishra SP, Srivastava K, Singh N, Singh S, et al. Evaluation of volumetric doses of organs at risk in carcinoma cervix patients with HDR intracavitary brachytherapy and comparison of CT-based and conventional plans. J Biomed Phys Eng 2019;9(6):603-12.
  • Sakyanun P. Comparative Survival Assessment of Two-Dimension (2D) versus Three-dimension (3D) brachytherapy treatment in locally advanced cervical cancer: A retrospective case control study. J Radiat Nucl Med 2020;1(1):13-22.
  • Singh N, Ahamed S, Sinha A, Srivastava S, Painuly N K, Mandal A, et al. Rectal and Bladder Dose Measurements in the Intracavitary Applications of Cervical Cancer Treatment with HDR Afterloading System: Comparison of TPS Data with MOSFET Detector. J Biomed Phys Eng 2020;10(2):141-6.
  • Mukundan H, Tyagi K, Mukherjee D, Patel RK. Evaluation of variation of interfraction doses to organs at risk during brachytherapy of cervical cancer. Med J Armed Forces India 2020;76(2):201-6.
  • Chakravarty N, Semwal MK, Trivedi G, Suhag V, Jain M, Sharma N, et al. Image-based 3D dosimetric studies with high dose rate intracavitary brachytherapy of cervical cancer. J Radiother Pract 2019;19(3):1-4.
  • Subondone AJT, Kuipers TJ, Koper PCM. Aplication of the Selectron HDR in the treatment of the gynaecological tumours: The Rotterdam method. Activity suppl 1991;2:64-72.
  • Kron T. Application of thermoluminescence dosimetry in medicine. Radiat Protect Dosim 1999;85(1-4):333 40.
  • Marinello G. Radiothermoluminescent Dosimeters and Diodes. In: Mayles P, Nahum A, Rosenwald JC (eds). Handbook of Radiotherapy Physics. Theory and Practice. 1st ed. New York, London: Taylor & Francis; 2007:304-20.
  • Metha V, Gupta P, Gothwal RS, Dana R, Gupta N, Gupta S. Comparative study of dose volume parameters in 2-dimensional radiography and 3-dimensional computed tomography based high dose rate intracavitary brachytherapy in cervical cancer: A prospective study. Asian Pac J Cancer Care 2022;7(3):509-14.
  • Mukundan H, Tyagi K, Mukherjee D, Patel RK. Evaluation of variation of interfraction doses to organs at risk during brachytherapy of cervical cancer. Med J Armed Foces India 2020;76(2):201-6.
  • Tyagi K, Mukundan H, Mukherjee D, Semwal M, Sarin A. Non isocentric film-based intracavitary brachytherapy planning in cervical cancer: a retrospective dosimetric analysis with CT planning. J Contemp Brachytherapy 2012;4(3):129-34.
  • Wu A, Tang D, Wu A, Liu Y, Qian L, Zhu L. Comparison of the Dosimetric Influence of Applicator Displacement on 2D and 3D Brachytherapy for Cervical Cancer Treatment. Technol Cancer Res Treat 2021; doi:10.1177/15330338211041201.
  • Hashemi FA, Mansouri S, Aghili M, Esmati E, Babaei M, Saeedian A, et al. A comparison between 2D and 3D planning of high-dose-rate vaginal cuff brachytherapy in patients with stage I-II endometrial cancer using cobalt-60. J Contemp Brachytherapy 2021;13(5):526-32.

Comparison of computerized planning and TLD dosimetry measurements in gynecological endocavitary brachytherapy applications

Year 2024, Volume: 63 Issue: 2, 249 - 260, 10.06.2024
https://doi.org/10.19161/etd.1315183

Abstract

Aim: Dosimetric evaluation of rectum and bladder doses in endocavitary brachytherapy treatment of patients with operated/inoperable cervix and endometrium cancer.
Materials and Methods: A rectal probe with thermoluminescence dosimetry (TLD) was inserted to measure doses in the rectum in endocavitary brachytherapy treatments of 10 inoperable, 12 operated patients with cervical and endometrial cancer. A foley catheter (balloon) in the neck of the bladder and a chain in its base was placed to determine the bladder doses.
Applicator points, vagina, bladder, and rectum points were determined on the radiographs of the patients taken in the simulator, and dose distributions were calculated in the brachytherapy treatment planning system. Doses calculated at 4 points in the rectum and measured by TLD were compared as a percentage difference. The dose at the bladder neck was statistically compared with the highest dose at its base.
Results: The differences between the two techniques in operated and inoperable patients for the rectum; respectively, maximum 17.68% and 17.96%, minimum 0.38% and 0.20%, mean R1:5.62%, R2:4.22%, R3:5.96%, R4:7,58% and R1:6.73%, R2:4.36%, R3:4.34%, R4: 7.53% were determined. While the difference between the bladder neck and the maximum dose point at its base was significant in operated patients (p=0.0037), it was insignificant in inoperable patients (p=0.3863).
Conclusion: The difference between the calculated and measured doses in the rectum is not clinically significant. Doses for rectal complications should be determined at multiple points. The dose determined at the bladder neck is not sufficient for bladder complications, the doses should also be determined at the base of the bladder.

Project Number

---

References

  • Delclos L, Flectcher GH. Gynecolog Cancer. In:Levitt SH, Tapley N (eds). Technological Basis of Radiation Therapy: Practical Clinical Applications. 1st ed. Philadelphia: Lea & Febiga; 1992:263-88.
  • Dobbs J,Barret A, Ash D. Cervix Uteri and Corpus Uteri. In: Dobbs J, Barrett A (eds). Practical Radiotherapy Planning. 2nd ed. Melbourne: A division of Holder & Stoughon;1992:241-56.
  • Nag S, Scruggs GR. Clinical Aspects and Applications of High–Dose-Rate Brachytherapy. In: Halperin EC, Wazer DE, Perez CA, Brady LW (eds). Principles and Practice of Radiation Oncology. 6th ed. Philadelphia: Lippincott Williams &Wilkins; 2013:507-24.
  • Kapp KS, Stuecklschweiger GF, Kapp DS, Hackl AG. Dosimetry of intracavitary placement for uterine and cervical carcinoma: Results of orthogonal film, TLD, and CT-assisted techniques. Radiother Oncol 1992;24(3):137-46.
  • Lahtinen T, Tenhunen M, Väyrynen M. ICRU reference points and maximum doses of rectum and bladder in intracavitary radiotherapy. Radiother Oncol 1993;28(2):174-6.
  • Montana GS, Fowler WC. Carcinoma of the cervix: Analysis of bladder and rectal radiation dose and complications. Int J Radiat Oncol Biol Phys 1989;16(1):95-100.
  • Kapp KS, Stuecklschweiger GF, Kapp DS, Poschauko J, Pickel H, Hackl A. Carcinoma of the cervix: Analysis of complications after primary external beam radiation and IR-192 HDR brachytherapy. Radiother Oncol.1997;42(2):143-53.
  • Terhima T, Chatani M, Hata K, Inoue T. High-Dose Rate intracavitary therapy for carcinoma of the uterine cervix: II. Risk factors for rectal complication. Int J Radiat Oncol Biol Phys 1988;14(2):281-6.
  • Nair MT, Cheng MC, Barker A, Rouse BS. High dose rate (HDR) brachyterapy technique: for carcinoma of uterine-cervix using Nucletron applicators. Med Dosim 1995;20(3):201-7.
  • Khan FM, Gibbons JP. Low-dose-rate brachytherapy: Rules of implantation and dose specification. In: Khan FM, Gibbons JP (eds). The Physics of Radiation Therapy. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2014:309-47.
  • Bahadur YA, Constantinescu C, Hassouna AH, Eltaher MM, Ghassal NM, Awad NA. Single versus multichannel applicator in high-dose-rate vaginal brachytherapy optimized by inverse treatment planning. J Contemp Brachytherapy 2015;6(4):362–70.
  • Romanyukha A, Carrara M, Mazzeo D, Tenconi C, Al-Salmani T, Poder J, et al. An innovative gynecological HDR brachytherapy applicator system for treatment delivery and real-time verification. Phys Med 2019;59:151-7.
  • Kemikler G. Brakiterapi (BT) Fiziği. In: Becerir HB, Alkaya F (eds). Radyoterapi Fiziği. 1. Baskı. Ankara:Nobel yayın; 2020:797-818.
  • Fonseca GP, Johansen JG, Smith RL, Beaulieu L, Beddarf S, Kertzscher G, et al. In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice. Phys Imaging Radiat Oncol 2020;16(1-51):1-11.
  • Houlihan OA, Workman G, Hounsell AR, Prise KM, Jain S. In vivo dosimetry in pelvic brachytherapy. Br j Radiol 2022;95 (1137):20220046.
  • Fowler SF, Stitt JA. High dose rate afterloading: how many fractions for gynaecological treatments? Activity 1991;5:135-6.
  • Khan FM, Gibbons JP. High-Dose-Rate Brachytherapy. In: Khan FM, Gibbons JP (eds). The Physics of Radiation Therapy. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2014:475-90.
  • Hanks GE, Herring DF, Kramer S. Patterns of care outcome studies. Results of the rational practice in cancer of the cervix. Cancer 1983;51(5):959-67.
  • Orton CG, Wolf-Rosenblum S. Dose dependence of complication rates in cervix cancer radiotherapy. Int J Radiot Oncol Biol Phys 1986;12(1):37-44.
  • Stryker JA, Barthdomew M, Velkley DE, Cunningham DE, Mortel R, Craycraft G. et al. Bladder and rectal complications following radiotherapy for cervix. Gynecol Oncol 1988;29(1):1-11.
  • ICRU Report 38. Dose and Volume Specifications for Reporting Intracavitary Therapy in Gynecology. Bethesda, Maryland, USA: International Commission on Radiation Units and Measurements; 1985:1-23.
  • Deshpande DD, Shrivastav SK, Pradhan AS, Viswanathan PS, Dinshaw KA. Dosimetry of intracavitary applications in carcinoma of the cervix:rectal dose analysis. Radiother Oncol 1997;42(2):163-6.
  • Sun LM, Huang EY, Ko SF, Wang CJ, Leung SW, Lin H, et al. Computer tomography-assisted three dimensional technique to assess rectal and bladder wall dose in intracavitary brachytherapy for uterine cervical cancer. Radiother Oncol 2004;71(3):333-7.
  • Kim RY, Shen S, Duan J. Image-based three dimensional treatment planning of intracavitary brachytherapy for cancer of the cervix: Dose-volume histograms of the bladder, rectum, sigmoid colon and small bowel. Brachytherapy 2007;6(3):187-94.
  • Ju SG, Huh SJ, Shin JS, Park W, Nam H, Bae S et. al. Different effects of bladder distention on pint A-based and 3D-conformal intracavitary brachytherapy planning for cervical cancer. Radiat Res 2013;54(2):349-56.
  • Srivastava S, Painuly NK, Mishra SP, Srivastava K, Singh N, Singh S, et al. Evaluation of volumetric doses of organs at risk in carcinoma cervix patients with HDR intracavitary brachytherapy and comparison of CT-based and conventional plans. J Biomed Phys Eng 2019;9(6):603-12.
  • Sakyanun P. Comparative Survival Assessment of Two-Dimension (2D) versus Three-dimension (3D) brachytherapy treatment in locally advanced cervical cancer: A retrospective case control study. J Radiat Nucl Med 2020;1(1):13-22.
  • Singh N, Ahamed S, Sinha A, Srivastava S, Painuly N K, Mandal A, et al. Rectal and Bladder Dose Measurements in the Intracavitary Applications of Cervical Cancer Treatment with HDR Afterloading System: Comparison of TPS Data with MOSFET Detector. J Biomed Phys Eng 2020;10(2):141-6.
  • Mukundan H, Tyagi K, Mukherjee D, Patel RK. Evaluation of variation of interfraction doses to organs at risk during brachytherapy of cervical cancer. Med J Armed Forces India 2020;76(2):201-6.
  • Chakravarty N, Semwal MK, Trivedi G, Suhag V, Jain M, Sharma N, et al. Image-based 3D dosimetric studies with high dose rate intracavitary brachytherapy of cervical cancer. J Radiother Pract 2019;19(3):1-4.
  • Subondone AJT, Kuipers TJ, Koper PCM. Aplication of the Selectron HDR in the treatment of the gynaecological tumours: The Rotterdam method. Activity suppl 1991;2:64-72.
  • Kron T. Application of thermoluminescence dosimetry in medicine. Radiat Protect Dosim 1999;85(1-4):333 40.
  • Marinello G. Radiothermoluminescent Dosimeters and Diodes. In: Mayles P, Nahum A, Rosenwald JC (eds). Handbook of Radiotherapy Physics. Theory and Practice. 1st ed. New York, London: Taylor & Francis; 2007:304-20.
  • Metha V, Gupta P, Gothwal RS, Dana R, Gupta N, Gupta S. Comparative study of dose volume parameters in 2-dimensional radiography and 3-dimensional computed tomography based high dose rate intracavitary brachytherapy in cervical cancer: A prospective study. Asian Pac J Cancer Care 2022;7(3):509-14.
  • Mukundan H, Tyagi K, Mukherjee D, Patel RK. Evaluation of variation of interfraction doses to organs at risk during brachytherapy of cervical cancer. Med J Armed Foces India 2020;76(2):201-6.
  • Tyagi K, Mukundan H, Mukherjee D, Semwal M, Sarin A. Non isocentric film-based intracavitary brachytherapy planning in cervical cancer: a retrospective dosimetric analysis with CT planning. J Contemp Brachytherapy 2012;4(3):129-34.
  • Wu A, Tang D, Wu A, Liu Y, Qian L, Zhu L. Comparison of the Dosimetric Influence of Applicator Displacement on 2D and 3D Brachytherapy for Cervical Cancer Treatment. Technol Cancer Res Treat 2021; doi:10.1177/15330338211041201.
  • Hashemi FA, Mansouri S, Aghili M, Esmati E, Babaei M, Saeedian A, et al. A comparison between 2D and 3D planning of high-dose-rate vaginal cuff brachytherapy in patients with stage I-II endometrial cancer using cobalt-60. J Contemp Brachytherapy 2021;13(5):526-32.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Radiation Therapy, Health Physics
Journal Section Research Articles
Authors

Nezahat Olacak 0000-0002-0700-0420

Zeynep Özsaran 0000-0003-4362-3542

Project Number ---
Publication Date June 10, 2024
Submission Date June 15, 2023
Published in Issue Year 2024Volume: 63 Issue: 2

Cite

Vancouver Olacak N, Özsaran Z. Jinekolojik endokaviter brakiterapi uygulamalarında bilgisayarlı planlama ve TLD dozimetrisi ölçümlerinin karşılaştırılması. EJM. 2024;63(2):249-60.