Araştırma Makalesi
BibTex RIS Kaynak Göster

Malign ve benign tiroid nodüllerinin ayrımında ARFI elastografi

Yıl 2022, Cilt: 61 Sayı: 3, 350 - 359, 12.09.2022
https://doi.org/10.19161/etd.1167252

Öz

Amaç: Malign ve benign tiroid nodüllerini ayırd etmede “Acoustic Radiation Force Impulse” (ARFİ) elastografinin “virtual touch tissue elastografi” (VTE) modunun tanısal performansını değerlendirmek
Gereç ve Yöntem: Çapı > 5 mm olan iki yüz dört adet solid ve ağırlıklı solid nodül prospektif olarak ultrasonografi, ARFI elastografinin VTQ modu, ince iğne aspirasyon biyopsisi ve endike olduğunda doku patolojisi ile değerlendirildi.
Yüz doksan altı nodülde üç makaslama dalgası hızı (shear wave velocity-SWV) ölçümü yapıldı. Her bir nodül için SWV oranı, nodülün SWV'sinin ortalama değerinin komşu parankimin ortalama değerine bölünmesiyle hesaplandı. SWV değeri ve SWV oranının tanısal performansı, ROC analizi ile değerlendirildi.
Bulgular: Benign ve malign tiroid nodüllerinde normal parankimdeki ortalama SWV değeri sırasıyla 2,13±0,44 m/s, 2,06±0,80 m/s ve 2,06±0,88 m/s idi. SWV oranları benign tiroid nodülleri için 0.97±0.37 ve malign tiroid nodülleri için 1.02±0.40 idi. Ortalama SWV değerleri (t=0,008) (P=0,994) veya SWV oranları (t=0,596; P=0,527) açısından benign ve malign nodüller arasında anlamlı fark yoktu. Maligniteyi öngörmek için herhangi bir cut-off noktası bulunmadı. Alt grup analizinde, SWV ve SWV oranı için AUC'ler, ˂10 mm ve ≥10 mm nodüller arasında önemli ölçüde farklıydı. Bunun dışında herhangi iki grup arasında anlamlı fark saptanmadı (tümü P>0.05). SWV ve SWV oranı için en iyi cut-off noktaları, <10 mm nodüller için sırasıyla SWV için 2.59 m/s ve SWV oranı için 1.0 idi.
Sonuç: ARFİ görüntülemenin VTQ modu, maligniteyi saptamak için iyi bir tanısal performansa sahip değildir ve gereksiz tiroid biyopsilerinin azaltılmasına katkıda bulunamaz.

Kaynakça

  • Liu BJ, Li DD, Xu HX et al. Quantitative shear wave velocity measurement on acoustic radiation force impulse elastography for differential diagnosis between benign and malignant thyroid nodules: meta-analysis. Ultrasound in Medicine & Biology 2015; 41 (12): 3035-43.
  • Yoon JH, Lee HS, Kim EK, Moon HJ, Kwak JY. Malignancy risk stratification of thyroid nodules: comparison between the thyroid imaging reporting and data system and the 2014 American thyroid association management guidelines. Radiology 2016; 278 (3): 917-24.
  • Kwak JY, Han KH, Yoon JH et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 2011; 260 (3): 892-9.
  • Bojunga J, Dauth N, Berner C, et al. Acoustic radiation force impulse imaging for differentiation of thyroid nodules. PLoS One. 2012;7(8):e42735.
  • Calvete AC, Mestre JD, Gonzalez JM et al. Acoustic radiation force impulse imaging for evaluation of the thyroid gland. Journal of Ultrasound in Medicine. 2014; 33 (6): 1031-40.
  • Zhang FJ, Han RL, Zhao XM. The value of virtual touch tissue image (VTI) and virtual touch tissue quantification (VTQ) in the differential diagnosis of thyroid nodules. European Journal of Radiology. 2014; 83 (11): 2033-40.
  • Hu X, Liu Y, Qian L. Diagnostic potential of real-time elastography (RTE) and shear wave elastography (SWE) to differentiate benign and malignant thyroid nodules: A systematic review and meta-analysis. Medicine (Baltimore). 2017;96(43):e8282.
  • Zhan J, Jin JM, Diao XH, Chen Y. Acoustic radiation force impulse imaging (ARFI) for differentiation of benign and malignant thyroid nodules—A meta-analysis. European Journal of Radiology 2015; 84(11): 2181-6.
  • Zhuo J, Ma Z, Fu WJ, Liu SP. Differentiation of benign from malignant thyroid nodules with acoustic radiation force impulse technique. The British Journal of Radiology 2014; 87 (1035): 20130263.
  • Dudea SM, Botar-Jid C. Ultrasound elastography in thyroid disease. Medical Ultrasonography 2015; 17 (1): 74-96.
  • Xu JM, Xu HX, Xu XH F et al. Solid hypo-echoic thyroid nodules on ultrasound: the diagnostic value of acoustic radiation force impulse elastography. Ultrasound in Medicine & Biology 2014; 40 (9): 2020-30.
  • Zhang YF, Xu JM, Xu HX, et al. Acoustic Radiation Force Impulse Elastography: A Useful Tool for Differential Diagnosis of Thyroid Nodules and Recommending Fine-Needle Aspiration: A Diagnostic Accuracy Study. Medicine (Baltimore). 2015;94(42):e1834.
  • Hamidi C, Göya C, Hattapoğlu S et al. Acoustic radiation force impulse (ARFI) imaging for the distinction between benign and malignant thyroid nodules. La Radiologia Medica 2015; 120 (6): 579-83.
  • Xu JM, Xu XH, Xu HX et al. Conventional US, US elasticity imaging, and acoustic radiation force impulse imaging for prediction of malignancy in thyroid nodules. Radiology 2014; 272 (2): 577-86.
  • Zhang Y-F, Xu H-X, He Y et al. (2012) Virtual Touch Tissue Quantification of Acoustic Radiation Force Impulse: A New Ultrasound Elastic Imaging in the Diagnosis of Thyroid Nodules. PLoS ONE 7(11): e49094.
  • Tian W, Hao S, Gao B et al. Comparison of diagnostic accuracy of real-time elastography and shear wave elastography in differentiation malignant from benign thyroid nodules. Medicine (Baltimore) 2015; 94 (52): e2312.
  • Gu J, Du L, Bai M et al. Preliminary study on the diagnostic value of acoustic radiation force impulse technology for differentiating between benign and malignant thyroid nodules. Journal of Ultrasound in Medicine 2012; 31 (5): 763-71.
  • Hou XJ, Sun AX, Zhou XL et al. The application of virtual touch tissue quantification (VTQ) in diagnosis of thyroid lesions: a preliminary study. European Journal of Radiology 2013; 82 (5): 797-801.
  • Zhang YF, Xu HX, Xu JM et al. Acoustic radiation force impulse elastography in the diagnosis of thyroid nodules: useful or not useful? Ultrasound in Medicine & Biology 2015; 41 (10): 2581-93.
  • Sebag F, Vaillant-Lombard J, Berbis J et al. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. The Journal of Clinical Endocrinology & Metabolism 2010; 95 (12): 5281-8.
  • Fernandez-Sanchez J. TI-RADS classification of thyroid nodules based on a score modified according to ultrasound criteria for malignancy. Revista Argentina de Radiologia 2014; 78 (3): 138–48.
  • Moifo B, Takoeta EO, Tambe J, Blanc F, Fotsin JG. Reliability of thyroid imaging reporting and data system (TIRADS) classification in differentiating benign from malignant thyroid nodules. Open Journal of Radiology 2013; 3 (3): 103–7.
  • Grazhdani H, Cantisani V, Lodise P et al. Prospective evaluation of acoustic radiation force impulse technology in the differentiation of thyroid nodules: accuracy and interobserver variability assessment. Journal of Ultrasound 2014; 17 (1): 13-20.
  • Zhan J, Diao XH, Chai QL, Chen Y. Comparative study of acoustic radiation force impulse imaging with real-time elastography in differential diagnosis of thyroid nodules. Ultrasound in Medicine & Biology 2013; 39 (12): 2217-25.
  • Zhang FJ, Han RL. The value of acoustic radiation force impulse (ARFI) in the differential diagnosis of thyroid nodules. European Journal of Radiology 2013; 82 (11): e686-e690. Available from: https://www.sciencedirect.com/science/article/pii/S0720048X13003446
  • Zhang YF, Liu C, Xu HX et al. Acoustic radiation force impulse imaging: a new tool for the diagnosis of papillary thyroid microcarcinoma. BioMed Research International 2014; 416969. Available from: https://www.hindawi.com/journals/bmri/2014/416969/
  • Li T, Zhou P, Zhang X et al. Diagnosis of thyroid nodules using virtual touch tissue quantification value and anteroposterior/transverse diameter ratio. Ultrasound in medicine & biology, 2015; 41(2):384-92.
  • Zhang H, Shi Q, Gu J et al. Combined value of virtual touch tissue quantification and conventional sonographic features for differentiating benign and malignant thyroid nodules smaller than 10 mm. Journal of Ultrasound in Medicine 2014; 33 (2): 257-64.
  • Jung WS, Ann YY, Ihn YK, Park YH. The Diagnostic performance of acoustic radiation force impulse elasticity imaging to differentiate malignant from benign thyroid nodules: comparison with conventional B-Mode sonographic findings. Journal of the Korean Society of Radiology 2016; 74 (2): 96-104.
  • Huang X, Guo LH, Xu HX J et al. Acoustic radiation force impulse induced strain elastography and point shear wave elastography for evaluation of thyroid nodules. International Journal of Clinical and Experimental Medicine. 2015; 8 (7): 10956-63.
  • Zhang F, Zhao X, Han R et al. Comparison of acoustic radiation force impulse imaging and strain elastography in differentiating malignant from benign thyroid nodules. Journal of Ultrasound in Medicine 2017; 36 (12): 2533-43.
  • Liu BJ, Lu F, Xu HX et al. The diagnosis value of acoustic radiation force impulse (ARFI) elastography for thyroid malignancy without highly suspicious features on conventional ultrasound. International Journal of Clinical and Experimental Medicine 2015; 8(9): 15362-72.

ARFI elastography for differentiating malignant and benign thyroid nodules

Yıl 2022, Cilt: 61 Sayı: 3, 350 - 359, 12.09.2022
https://doi.org/10.19161/etd.1167252

Öz

Aim: To examine the diagnostic performance of virtual touch tissue quantification (VTQ) mode of Acoustic Radiation Force Impulse (ARFI) elastography imaging in differentiating benign and malignant thyroid nodules.
Materials and Methods: Two hundred four solid and mostly solid nodules >5mm were prospectively evaluated with ultrasonography, VTQ mode of ARFI elastography, fine needle aspiration biopsy, and when indicated with tissue pathology. Three shear-wave velocities (SWV) measurements were done in 196 nodules. The SWV ratio for each nodule was calculated as the mean value of the SWV of the nodule divided by the mean value of the adjacent parenchyma. The diagnostic performance of SWV value and SWV-ratio were assessed by a receiver-operating characteristic (ROC) curve analysis.
Results: The mean SWV value in the normal parenchyma, in benign and malign thyroid nodules, were 2.13±0.44 m/s, 2.06±0.80 m/s, and 2.06±0.88 m/s respectively. The SWV-ratios were 0.97±0.37 for benign thyroid nodules and 1.02±0.40 for malignant thyroid nodules. There was no significant difference between benign and malign nodules in terms of mean SWV values (t=0.008) (P=0.994) or SWV-ratios (t =0.596; P=0.527). No cut-off point was found to predict malignancy. In subgroup analysis, AUCs for the SWV and SWV-ratio were significantly different between nodules ˂10 mm and those ≥10 mm, but not with any other two groups (all P>0.05) (Table-2). The cutoff points for the differential diagnosis were 2.59 m/s for SWV and 1.0 for SWV- ratio respectively for nodules <10 mm.
Conclusion: VTQ mode of ARFI imaging does not have a good diagnostic performance for detecting malignancy and cannot contribute to reducing unnecessary thyroid biopsies.

Kaynakça

  • Liu BJ, Li DD, Xu HX et al. Quantitative shear wave velocity measurement on acoustic radiation force impulse elastography for differential diagnosis between benign and malignant thyroid nodules: meta-analysis. Ultrasound in Medicine & Biology 2015; 41 (12): 3035-43.
  • Yoon JH, Lee HS, Kim EK, Moon HJ, Kwak JY. Malignancy risk stratification of thyroid nodules: comparison between the thyroid imaging reporting and data system and the 2014 American thyroid association management guidelines. Radiology 2016; 278 (3): 917-24.
  • Kwak JY, Han KH, Yoon JH et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 2011; 260 (3): 892-9.
  • Bojunga J, Dauth N, Berner C, et al. Acoustic radiation force impulse imaging for differentiation of thyroid nodules. PLoS One. 2012;7(8):e42735.
  • Calvete AC, Mestre JD, Gonzalez JM et al. Acoustic radiation force impulse imaging for evaluation of the thyroid gland. Journal of Ultrasound in Medicine. 2014; 33 (6): 1031-40.
  • Zhang FJ, Han RL, Zhao XM. The value of virtual touch tissue image (VTI) and virtual touch tissue quantification (VTQ) in the differential diagnosis of thyroid nodules. European Journal of Radiology. 2014; 83 (11): 2033-40.
  • Hu X, Liu Y, Qian L. Diagnostic potential of real-time elastography (RTE) and shear wave elastography (SWE) to differentiate benign and malignant thyroid nodules: A systematic review and meta-analysis. Medicine (Baltimore). 2017;96(43):e8282.
  • Zhan J, Jin JM, Diao XH, Chen Y. Acoustic radiation force impulse imaging (ARFI) for differentiation of benign and malignant thyroid nodules—A meta-analysis. European Journal of Radiology 2015; 84(11): 2181-6.
  • Zhuo J, Ma Z, Fu WJ, Liu SP. Differentiation of benign from malignant thyroid nodules with acoustic radiation force impulse technique. The British Journal of Radiology 2014; 87 (1035): 20130263.
  • Dudea SM, Botar-Jid C. Ultrasound elastography in thyroid disease. Medical Ultrasonography 2015; 17 (1): 74-96.
  • Xu JM, Xu HX, Xu XH F et al. Solid hypo-echoic thyroid nodules on ultrasound: the diagnostic value of acoustic radiation force impulse elastography. Ultrasound in Medicine & Biology 2014; 40 (9): 2020-30.
  • Zhang YF, Xu JM, Xu HX, et al. Acoustic Radiation Force Impulse Elastography: A Useful Tool for Differential Diagnosis of Thyroid Nodules and Recommending Fine-Needle Aspiration: A Diagnostic Accuracy Study. Medicine (Baltimore). 2015;94(42):e1834.
  • Hamidi C, Göya C, Hattapoğlu S et al. Acoustic radiation force impulse (ARFI) imaging for the distinction between benign and malignant thyroid nodules. La Radiologia Medica 2015; 120 (6): 579-83.
  • Xu JM, Xu XH, Xu HX et al. Conventional US, US elasticity imaging, and acoustic radiation force impulse imaging for prediction of malignancy in thyroid nodules. Radiology 2014; 272 (2): 577-86.
  • Zhang Y-F, Xu H-X, He Y et al. (2012) Virtual Touch Tissue Quantification of Acoustic Radiation Force Impulse: A New Ultrasound Elastic Imaging in the Diagnosis of Thyroid Nodules. PLoS ONE 7(11): e49094.
  • Tian W, Hao S, Gao B et al. Comparison of diagnostic accuracy of real-time elastography and shear wave elastography in differentiation malignant from benign thyroid nodules. Medicine (Baltimore) 2015; 94 (52): e2312.
  • Gu J, Du L, Bai M et al. Preliminary study on the diagnostic value of acoustic radiation force impulse technology for differentiating between benign and malignant thyroid nodules. Journal of Ultrasound in Medicine 2012; 31 (5): 763-71.
  • Hou XJ, Sun AX, Zhou XL et al. The application of virtual touch tissue quantification (VTQ) in diagnosis of thyroid lesions: a preliminary study. European Journal of Radiology 2013; 82 (5): 797-801.
  • Zhang YF, Xu HX, Xu JM et al. Acoustic radiation force impulse elastography in the diagnosis of thyroid nodules: useful or not useful? Ultrasound in Medicine & Biology 2015; 41 (10): 2581-93.
  • Sebag F, Vaillant-Lombard J, Berbis J et al. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. The Journal of Clinical Endocrinology & Metabolism 2010; 95 (12): 5281-8.
  • Fernandez-Sanchez J. TI-RADS classification of thyroid nodules based on a score modified according to ultrasound criteria for malignancy. Revista Argentina de Radiologia 2014; 78 (3): 138–48.
  • Moifo B, Takoeta EO, Tambe J, Blanc F, Fotsin JG. Reliability of thyroid imaging reporting and data system (TIRADS) classification in differentiating benign from malignant thyroid nodules. Open Journal of Radiology 2013; 3 (3): 103–7.
  • Grazhdani H, Cantisani V, Lodise P et al. Prospective evaluation of acoustic radiation force impulse technology in the differentiation of thyroid nodules: accuracy and interobserver variability assessment. Journal of Ultrasound 2014; 17 (1): 13-20.
  • Zhan J, Diao XH, Chai QL, Chen Y. Comparative study of acoustic radiation force impulse imaging with real-time elastography in differential diagnosis of thyroid nodules. Ultrasound in Medicine & Biology 2013; 39 (12): 2217-25.
  • Zhang FJ, Han RL. The value of acoustic radiation force impulse (ARFI) in the differential diagnosis of thyroid nodules. European Journal of Radiology 2013; 82 (11): e686-e690. Available from: https://www.sciencedirect.com/science/article/pii/S0720048X13003446
  • Zhang YF, Liu C, Xu HX et al. Acoustic radiation force impulse imaging: a new tool for the diagnosis of papillary thyroid microcarcinoma. BioMed Research International 2014; 416969. Available from: https://www.hindawi.com/journals/bmri/2014/416969/
  • Li T, Zhou P, Zhang X et al. Diagnosis of thyroid nodules using virtual touch tissue quantification value and anteroposterior/transverse diameter ratio. Ultrasound in medicine & biology, 2015; 41(2):384-92.
  • Zhang H, Shi Q, Gu J et al. Combined value of virtual touch tissue quantification and conventional sonographic features for differentiating benign and malignant thyroid nodules smaller than 10 mm. Journal of Ultrasound in Medicine 2014; 33 (2): 257-64.
  • Jung WS, Ann YY, Ihn YK, Park YH. The Diagnostic performance of acoustic radiation force impulse elasticity imaging to differentiate malignant from benign thyroid nodules: comparison with conventional B-Mode sonographic findings. Journal of the Korean Society of Radiology 2016; 74 (2): 96-104.
  • Huang X, Guo LH, Xu HX J et al. Acoustic radiation force impulse induced strain elastography and point shear wave elastography for evaluation of thyroid nodules. International Journal of Clinical and Experimental Medicine. 2015; 8 (7): 10956-63.
  • Zhang F, Zhao X, Han R et al. Comparison of acoustic radiation force impulse imaging and strain elastography in differentiating malignant from benign thyroid nodules. Journal of Ultrasound in Medicine 2017; 36 (12): 2533-43.
  • Liu BJ, Lu F, Xu HX et al. The diagnosis value of acoustic radiation force impulse (ARFI) elastography for thyroid malignancy without highly suspicious features on conventional ultrasound. International Journal of Clinical and Experimental Medicine 2015; 8(9): 15362-72.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Gülen Demirpolat 0000-0002-9639-2672

Lale Tuna 0000-0003-4409-3459

Gulgun Kavukcu 0000-0001-6866-7256

Yeşim Ertan 0000-0002-4522-0774

Serpil Paksoy 0000-0002-4513-1018

Celalettin Çevik 0000-0002-1123-6196

Yayımlanma Tarihi 12 Eylül 2022
Gönderilme Tarihi 18 Ocak 2022
Yayımlandığı Sayı Yıl 2022Cilt: 61 Sayı: 3

Kaynak Göster

Vancouver Demirpolat G, Tuna L, Kavukcu G, Ertan Y, Paksoy S, Çevik C. ARFI elastography for differentiating malignant and benign thyroid nodules. ETD. 2022;61(3):350-9.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519