The role of stem cells and biomaterials in peripheral nervous system regeneration
Yıl 2025,
Cilt: 64 Sayı: 2, 402 - 414, 10.06.2025
Dila Hatun Sal
,
Zeynep Simge Yılmaz
,
Büşra Horuz
,
Aybike Berrak Özdemir
,
Kubilay Doğan Kılıç
Öz
Peripheral nerve injuries present significant challenges to patients and require intensive and costly treatments. The utilization of biomaterials is an effective treatment method. Personalized biomaterials are promising for the regeneration of damaged peripheral nerves. Stem cells have an important role in modern treatment methods because of their properties and promise to solve diseases requiring tissue regeneration, such as peripheral nerve damage. In this review, we aimed to investigate the relationship between stem cells and biomaterials, considering their different origins and potential compatibility in facilitating the regeneration of peripheral nerve injury.
Kaynakça
- Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater. 2020;106:54–69. https://doi.org/10.1016/j.actbio.2020.02.003
- Gordon T. Peripheral nerve regeneration and muscle reinnervation. Int J Mol Sci. 2020;21(22):8652. https://doi.org/10.3390/ijms21228652
- Min Q, Parkinson DB, Dun XP. Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia. 2021;69(2):235–254. https://doi.org/10.1002/glia.23892
- Thau L, Reddy V, Singh P. Anatomy, Central Nervous System. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK542179/
- Alkan İ, Bekar E, Altunkaynak Z. Periferik Sinir Yaralanmaları ve Rejenerasyonu. Ahi Evran Med J. 2022;6(2):211-19. https://doi.org/10.46332/aemj.975395
- Mescher A. Junqueira's Basic Histology: Text and Atlas, Fourteenth Edition. Yunanistan: McGraw-Hill Education; 2015.
- Allen NJ, Lyons DA. Glia as architects of central nervous system formation and function. Science. 2018;362(6411):181–85. https://doi.org/10.1126/science.aat0473
- Ünlükal N. Sinir Dokusuna Genel Bakış. In: Taş F. Nörobilim Alanında Multidisipliner Yaklaşımlar. Iksad Yayınevi; 2021. p. 3-18.
- Guillamón-Vivancos T, Gómez-Pinedo U, Matías-Guiu J. Astrocytes in neurodegenerative diseases (I): function and molecular description. Neurologia. 2015;30(2):119–29. https://doi.org/10.1016/j.nrl.2012.12.007
- Kipp M. Oligodendrocyte Physiology and Pathology Function. Cells. 2020;9(9):2078. https://doi.org/10.3390/cells9092078
- Nelles DG, Hazrati LN. The pathological potential of ependymal cells in mild traumatic brain injury. Front Cell Neurosci. 2023;17:1216420. https://doi.org/10.3389/fncel.2023.1216420
- Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol. 2017;35:441–68. https://doi.org/10.1146/annurev-immunol-051116-052358
- Bosch-Queralt M, Fledrich R, Stassart RM. Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis. 2023;176:105952. https://doi.org/10.1016/j.nbd.2022.105952
- Jessen KR. Glial cells. Int J Biochem Cell Biol. 2004;36(10):1861–67. https://doi.org/10.1016/j.biocel.2004.02.023
- Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol. 2021;18(8):571–87. https://doi.org/10.1038/s41575-021-00423-7
- Zeng W, Yang F, Shen WL, Zhan C, Zheng P, Hu J. Interactions between the central nervous system and peripheral metabolic organs. Sci China Life Sci. 2022;65(10):1929–58. https://doi.org/10.1007/s11427-021-2103-5
- Lopes B, Sousa P, Alvites R, Branquinho M, Sousa AC, Mendonça C, et al. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int J Mol Sci. 2022;23(2):918. https://doi.org/10.3390/ijms23020918
- Pabari A, Yang SY, Seifalian AM, Mosahebi A. Modern surgical management of peripheral nerve gap. J Plast Reconstr Aesthet Surg. 2010;63(12):1941-48. https://doi.org/10.1016/j.bjps.2009.12.010
- Gibbons C.H. Basics of autonomic nervous system function. Handb Clin Neurol. 2019;160:407–18. https://doi.org/10.1016/B978-0-444-64032-1.00027-8
- Modrak M, Talukder MAH, Gurgenashvili K, Noble M, Elfar JC. Peripheral nerve injury and myelination: Potential therapeutic strategies. J Neurosci Res. 2020;98(5):780–95. https://doi.org/10.1002/jnr.24538
- Zhang Y, Zhao Q, Chen Q, Xu L, Yi S. Transcriptional Control of Peripheral Nerve Regeneration. Mol Neurobiol. 2023;60(1):329–41. https://doi.org/10.1007/s12035-022-03090-0
- Zhang PX, Yin XF, Kou YH, Xue F, Han N, Jiang BG. Neural regeneration after peripheral nerve injury repair is a system remodelling process of interaction between nerves and terminal effector. Neural Regen Res. 2015;10(1):52. https://doi.org/10.4103/1673-5374.150705
- Dubový P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat. 2011;193(4):267-75. https://doi.org/10.1016/j.aanat.2011.02.011
- Chen P, Piao X, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015;130:605-18. https://doi.org/10.1007/s00401-015-1482-4
- Wan T, Zhang FS, Qin MY, Jiang HR, Zhang M, Qu Y, et al. Growth factors: Bioactive macromolecular drugs for peripheral nerve injury treatment - Molecular mechanisms and delivery platforms. Biomed Pharmacother. 2024;170:116024. https://doi.org/10.1016/j.biopha.2023.116024
- Song S, McConnell KW, Amores D, Levinson A, Vogel H, Quarta M, et al. Electrical stimulation of human neural stem cells via conductive polymer nerve guides enhances peripheral nerve recovery. Biomaterials. 2021;275:120982. https://doi.org/10.1016/j.biomaterials.2021.120982
- Salles MB, Horikawa FK, Allegrini S Jr, Zangrando D, Yoshimoto M, Shinohara EH. Clinical evaluation of the perception of post-trauma paresthesia in the mandible, using a biomimetic material: A preliminary study in humans. Heliyon. 2023;9(8). https://doi.org/10.1016/j.heliyon.2023.e18304
- Modrak M, Talukder MH, Gurgenashvili K, Noble M, Elfar JC. Peripheral nerve injury and myelination: Potential therapeutic strategies. J Neurosci Res. 2020;98(5):780-95. https://doi.org/10.1002/jnr.24538
- Meng Q, Burrell JC, Zhang Q, Le AD. Potential Application of Orofacial MSCs in Tissue Engineering Nerve Guidance for Peripheral Nerve Injury Repair. Stem Cell Rev Rep. 2023;19(8):2612-31. https://doi.org/10.1007/s12015-023-10609-y
- Zhang RC, Du WQ, Zhang JY, Yu SX, Lu FZ, Ding HM, et al. Mesenchymal stem cell treatment for peripheral nerve injury: a narrative review. Neural Regen Res. 2021;16(11):2170. https://doi.org/10.4103/1673-5374.310941
- Sullivan R, Dailey T, Duncan K, Abel N, Borlongan CV. Peripheral nerve injury: stem cell therapy and peripheral nerve transfer. Int J Mol Sci. 2016;17(12):2101. https://doi.org/10.3390%2Fijms17122101
- Kubiak CA, Grochmal J, Kung TA, Cederna PS, Midha R, Kemp SW. Stem-cell-based therapies to enhance peripheral nerve regeneration. Muscle Nerve. 2020;61(4):449-59. https://doi.org/10.1002/mus.26760
- Dong R, Liu Y, Yang Y, Wang H, Xu Y, Zhang Z. MSC-derived exosomes-based therapy for peripheral nerve injury: a novel therapeutic strategy. Biomed Res Int 2019;2019:6458237. https://doi.org/10.1155/2019/6458237
- Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM. Augmenting peripheral nerve regeneration using stem cells: a review of current opinion. World J Stem Cells 2015;7(1):11. https://doi.org/10.4252%2Fwjsc.v7.i1.11
- Yi S, Zhang Y, Gu X, Huang L, Zhang K, Qian T, et al. Application of stem cells in peripheral nerve regeneration. Burns Trauma 2020;8 https://doi.org/10.1093%2Fburnst%2Ftkaa002
- Kim D, Lee AE, Xu Q, Zhang Q, Le AD. Gingiva-derived mesenchymal stem cells: potential application in tissue engineering and regenerative medicine—a comprehensive review. Front Immunol 2021;12:667221. https://doi.org/10.3389/fimmu.2021.667221
- Fathi SS, Zaminy A. Stem cell therapy for nerve injury. World J Stem Cells 2017;9(9):144. https://doi.org/10.4252/wjsc.v9.i9.144
- Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Prada J, et al. Effects of olfactory mucosa stem/stromal cell and olfactory ensheathing cells secretome on peripheral nerve regeneration. Biomolecules 2022;12(6):818. https://doi.org/10.3390%2Fbiom12060818
- Alvites RD, Caseiro AR, Pedrosa SS, Branquinho ME, Varejão AS, Maurício AC. The nasal cavity of the rat and mouse-source of mesenchymal stem cells for treatment of peripheral nerve injury. Anat Rec 2018;301(10):1678-1689. https://doi.org/10.1002/ar.23844
- Sumarwoto T, Suroto H, Mahyudin F, Utomo DN, Tinduh D, Notobroto HB, et al. Role of adipose mesenchymal stem cells and secretome in peripheral nerve regeneration. Ann Med Surg (Lond) 2021;67:102482. https://doi.org/10.1016/j.amsu.2021.102482
- Berrocal YA, Almeida VW, Gupta R, Levi AD. Transplantation of Schwann cells in a collagen tube for the repair of large, segmental peripheral nerve defects in rats. J Neurosurg 2013;119(3):720-732. https://doi.org/10.3171/2013.4.JNS121189
- Bozkurt A, van Neerven SG, Claeys KG, O'Dey DM, Sudhoff A, Brook GA, et al. The proximal medial sural nerve biopsy model: a standardised and reproducible baseline clinical model for the translational evaluation of bioengineered nerve guides. Biomed Res Int 2014;2014:121452. https://doi.org/10.1155/2014/121452
- Saeki M, Tanaka K, Imatani J, Okamoto H, Watanabe K, Nakamura T, et al. Efficacy and safety of novel collagen conduits filled with collagen filaments to treat patients with peripheral nerve injury: a multicenter, controlled, open-label clinical trial. Injury 2018;49(4):766-774. https://doi.org/10.1016/j.injury.2018.03.011
- Neubrech F, Sauerbier M, Moll W, Seegmüller J, Heider S, Harhaus L, et al. Enhancing the outcome of traumatic sensory nerve lesions of the hand by additional use of a chitosan nerve tube in primary nerve repair: a randomized controlled bicentric trial. Plast Reconstr Surg 2018;142(2):415-424. https://doi.org/10.1097/PRS.0000000000004574
- Dastagir K, Radtke C, Dastagir N, Bucan V, Strauß S, Jokuszies A, et al. A new standardized clinical model for evaluation of nerve guides: a single-blinded randomized controlled prospective study. Plast Reconstr Surg 2022;150(6):1298-1306. https://doi.org/10.1097/PRS.0000000000009677
- Atzei A, Calcagni M, Breda B, Fasolo G, Pajardi G, Cugola L. Clinical evaluation of a hyaluronan-based gel following microsurgical reconstruction of peripheral nerves of the hand. Microsurgery 2007;27(1):2-7. https://doi.org/10.1002/micr.20299
Periferik sinir sistemi yenilenmesinde kök hücre ve biyomateryallerin rolü
Yıl 2025,
Cilt: 64 Sayı: 2, 402 - 414, 10.06.2025
Dila Hatun Sal
,
Zeynep Simge Yılmaz
,
Büşra Horuz
,
Aybike Berrak Özdemir
,
Kubilay Doğan Kılıç
Öz
Periferik sinir yaralanmaları hastalar için önemli zorluklar teşkil eder ve yoğun ve maliyetli tedavi gerektirir. Biyomalzemelerin kullanımı tedavi için etkili bir yöntem sunar. Kişiselleştirilmiş biyomalzemeler hasarlı periferik sinirlerin rejenerasyonu için umut vaat eder. Özellikleri göz önüne alındığında kök hücreler, modern tedavi yöntemlerinin temel bir yönünü temsil eder ve bu durum ve diğerlerinin ele alınması için umut sunar. Bu derlemede, kök hücreler ve biyomalzemeler arasındaki ilişkiyi, çeşitli kökenlerini ve periferik sinir hasarının rejenerasyonunu kolaylaştırmadaki potansiyel uyumluluklarını göz önünde bulundurarak araştırmayı amaçlıyoruz.
Kaynakça
- Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater. 2020;106:54–69. https://doi.org/10.1016/j.actbio.2020.02.003
- Gordon T. Peripheral nerve regeneration and muscle reinnervation. Int J Mol Sci. 2020;21(22):8652. https://doi.org/10.3390/ijms21228652
- Min Q, Parkinson DB, Dun XP. Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia. 2021;69(2):235–254. https://doi.org/10.1002/glia.23892
- Thau L, Reddy V, Singh P. Anatomy, Central Nervous System. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK542179/
- Alkan İ, Bekar E, Altunkaynak Z. Periferik Sinir Yaralanmaları ve Rejenerasyonu. Ahi Evran Med J. 2022;6(2):211-19. https://doi.org/10.46332/aemj.975395
- Mescher A. Junqueira's Basic Histology: Text and Atlas, Fourteenth Edition. Yunanistan: McGraw-Hill Education; 2015.
- Allen NJ, Lyons DA. Glia as architects of central nervous system formation and function. Science. 2018;362(6411):181–85. https://doi.org/10.1126/science.aat0473
- Ünlükal N. Sinir Dokusuna Genel Bakış. In: Taş F. Nörobilim Alanında Multidisipliner Yaklaşımlar. Iksad Yayınevi; 2021. p. 3-18.
- Guillamón-Vivancos T, Gómez-Pinedo U, Matías-Guiu J. Astrocytes in neurodegenerative diseases (I): function and molecular description. Neurologia. 2015;30(2):119–29. https://doi.org/10.1016/j.nrl.2012.12.007
- Kipp M. Oligodendrocyte Physiology and Pathology Function. Cells. 2020;9(9):2078. https://doi.org/10.3390/cells9092078
- Nelles DG, Hazrati LN. The pathological potential of ependymal cells in mild traumatic brain injury. Front Cell Neurosci. 2023;17:1216420. https://doi.org/10.3389/fncel.2023.1216420
- Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol. 2017;35:441–68. https://doi.org/10.1146/annurev-immunol-051116-052358
- Bosch-Queralt M, Fledrich R, Stassart RM. Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis. 2023;176:105952. https://doi.org/10.1016/j.nbd.2022.105952
- Jessen KR. Glial cells. Int J Biochem Cell Biol. 2004;36(10):1861–67. https://doi.org/10.1016/j.biocel.2004.02.023
- Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol. 2021;18(8):571–87. https://doi.org/10.1038/s41575-021-00423-7
- Zeng W, Yang F, Shen WL, Zhan C, Zheng P, Hu J. Interactions between the central nervous system and peripheral metabolic organs. Sci China Life Sci. 2022;65(10):1929–58. https://doi.org/10.1007/s11427-021-2103-5
- Lopes B, Sousa P, Alvites R, Branquinho M, Sousa AC, Mendonça C, et al. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int J Mol Sci. 2022;23(2):918. https://doi.org/10.3390/ijms23020918
- Pabari A, Yang SY, Seifalian AM, Mosahebi A. Modern surgical management of peripheral nerve gap. J Plast Reconstr Aesthet Surg. 2010;63(12):1941-48. https://doi.org/10.1016/j.bjps.2009.12.010
- Gibbons C.H. Basics of autonomic nervous system function. Handb Clin Neurol. 2019;160:407–18. https://doi.org/10.1016/B978-0-444-64032-1.00027-8
- Modrak M, Talukder MAH, Gurgenashvili K, Noble M, Elfar JC. Peripheral nerve injury and myelination: Potential therapeutic strategies. J Neurosci Res. 2020;98(5):780–95. https://doi.org/10.1002/jnr.24538
- Zhang Y, Zhao Q, Chen Q, Xu L, Yi S. Transcriptional Control of Peripheral Nerve Regeneration. Mol Neurobiol. 2023;60(1):329–41. https://doi.org/10.1007/s12035-022-03090-0
- Zhang PX, Yin XF, Kou YH, Xue F, Han N, Jiang BG. Neural regeneration after peripheral nerve injury repair is a system remodelling process of interaction between nerves and terminal effector. Neural Regen Res. 2015;10(1):52. https://doi.org/10.4103/1673-5374.150705
- Dubový P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat. 2011;193(4):267-75. https://doi.org/10.1016/j.aanat.2011.02.011
- Chen P, Piao X, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015;130:605-18. https://doi.org/10.1007/s00401-015-1482-4
- Wan T, Zhang FS, Qin MY, Jiang HR, Zhang M, Qu Y, et al. Growth factors: Bioactive macromolecular drugs for peripheral nerve injury treatment - Molecular mechanisms and delivery platforms. Biomed Pharmacother. 2024;170:116024. https://doi.org/10.1016/j.biopha.2023.116024
- Song S, McConnell KW, Amores D, Levinson A, Vogel H, Quarta M, et al. Electrical stimulation of human neural stem cells via conductive polymer nerve guides enhances peripheral nerve recovery. Biomaterials. 2021;275:120982. https://doi.org/10.1016/j.biomaterials.2021.120982
- Salles MB, Horikawa FK, Allegrini S Jr, Zangrando D, Yoshimoto M, Shinohara EH. Clinical evaluation of the perception of post-trauma paresthesia in the mandible, using a biomimetic material: A preliminary study in humans. Heliyon. 2023;9(8). https://doi.org/10.1016/j.heliyon.2023.e18304
- Modrak M, Talukder MH, Gurgenashvili K, Noble M, Elfar JC. Peripheral nerve injury and myelination: Potential therapeutic strategies. J Neurosci Res. 2020;98(5):780-95. https://doi.org/10.1002/jnr.24538
- Meng Q, Burrell JC, Zhang Q, Le AD. Potential Application of Orofacial MSCs in Tissue Engineering Nerve Guidance for Peripheral Nerve Injury Repair. Stem Cell Rev Rep. 2023;19(8):2612-31. https://doi.org/10.1007/s12015-023-10609-y
- Zhang RC, Du WQ, Zhang JY, Yu SX, Lu FZ, Ding HM, et al. Mesenchymal stem cell treatment for peripheral nerve injury: a narrative review. Neural Regen Res. 2021;16(11):2170. https://doi.org/10.4103/1673-5374.310941
- Sullivan R, Dailey T, Duncan K, Abel N, Borlongan CV. Peripheral nerve injury: stem cell therapy and peripheral nerve transfer. Int J Mol Sci. 2016;17(12):2101. https://doi.org/10.3390%2Fijms17122101
- Kubiak CA, Grochmal J, Kung TA, Cederna PS, Midha R, Kemp SW. Stem-cell-based therapies to enhance peripheral nerve regeneration. Muscle Nerve. 2020;61(4):449-59. https://doi.org/10.1002/mus.26760
- Dong R, Liu Y, Yang Y, Wang H, Xu Y, Zhang Z. MSC-derived exosomes-based therapy for peripheral nerve injury: a novel therapeutic strategy. Biomed Res Int 2019;2019:6458237. https://doi.org/10.1155/2019/6458237
- Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM. Augmenting peripheral nerve regeneration using stem cells: a review of current opinion. World J Stem Cells 2015;7(1):11. https://doi.org/10.4252%2Fwjsc.v7.i1.11
- Yi S, Zhang Y, Gu X, Huang L, Zhang K, Qian T, et al. Application of stem cells in peripheral nerve regeneration. Burns Trauma 2020;8 https://doi.org/10.1093%2Fburnst%2Ftkaa002
- Kim D, Lee AE, Xu Q, Zhang Q, Le AD. Gingiva-derived mesenchymal stem cells: potential application in tissue engineering and regenerative medicine—a comprehensive review. Front Immunol 2021;12:667221. https://doi.org/10.3389/fimmu.2021.667221
- Fathi SS, Zaminy A. Stem cell therapy for nerve injury. World J Stem Cells 2017;9(9):144. https://doi.org/10.4252/wjsc.v9.i9.144
- Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Prada J, et al. Effects of olfactory mucosa stem/stromal cell and olfactory ensheathing cells secretome on peripheral nerve regeneration. Biomolecules 2022;12(6):818. https://doi.org/10.3390%2Fbiom12060818
- Alvites RD, Caseiro AR, Pedrosa SS, Branquinho ME, Varejão AS, Maurício AC. The nasal cavity of the rat and mouse-source of mesenchymal stem cells for treatment of peripheral nerve injury. Anat Rec 2018;301(10):1678-1689. https://doi.org/10.1002/ar.23844
- Sumarwoto T, Suroto H, Mahyudin F, Utomo DN, Tinduh D, Notobroto HB, et al. Role of adipose mesenchymal stem cells and secretome in peripheral nerve regeneration. Ann Med Surg (Lond) 2021;67:102482. https://doi.org/10.1016/j.amsu.2021.102482
- Berrocal YA, Almeida VW, Gupta R, Levi AD. Transplantation of Schwann cells in a collagen tube for the repair of large, segmental peripheral nerve defects in rats. J Neurosurg 2013;119(3):720-732. https://doi.org/10.3171/2013.4.JNS121189
- Bozkurt A, van Neerven SG, Claeys KG, O'Dey DM, Sudhoff A, Brook GA, et al. The proximal medial sural nerve biopsy model: a standardised and reproducible baseline clinical model for the translational evaluation of bioengineered nerve guides. Biomed Res Int 2014;2014:121452. https://doi.org/10.1155/2014/121452
- Saeki M, Tanaka K, Imatani J, Okamoto H, Watanabe K, Nakamura T, et al. Efficacy and safety of novel collagen conduits filled with collagen filaments to treat patients with peripheral nerve injury: a multicenter, controlled, open-label clinical trial. Injury 2018;49(4):766-774. https://doi.org/10.1016/j.injury.2018.03.011
- Neubrech F, Sauerbier M, Moll W, Seegmüller J, Heider S, Harhaus L, et al. Enhancing the outcome of traumatic sensory nerve lesions of the hand by additional use of a chitosan nerve tube in primary nerve repair: a randomized controlled bicentric trial. Plast Reconstr Surg 2018;142(2):415-424. https://doi.org/10.1097/PRS.0000000000004574
- Dastagir K, Radtke C, Dastagir N, Bucan V, Strauß S, Jokuszies A, et al. A new standardized clinical model for evaluation of nerve guides: a single-blinded randomized controlled prospective study. Plast Reconstr Surg 2022;150(6):1298-1306. https://doi.org/10.1097/PRS.0000000000009677
- Atzei A, Calcagni M, Breda B, Fasolo G, Pajardi G, Cugola L. Clinical evaluation of a hyaluronan-based gel following microsurgical reconstruction of peripheral nerves of the hand. Microsurgery 2007;27(1):2-7. https://doi.org/10.1002/micr.20299