Araştırma Makalesi
BibTex RIS Kaynak Göster

Thiostrepton ile FoxM1 inhibisyonu, DNA hasar yanıt genlerini baskılayarak meme kanseri hücrelerinin tedaviye duyarlılığını artırır

Yıl 2025, Cilt: 64 Sayı: 2, 223 - 230, 10.06.2025
https://doi.org/10.19161/etd.1603178

Öz

Amaç: Kemoterapi direnci, genellikle genotoksik ajanlara karşı direnç gelişimiyle ilişkilendirilir ve kanser tedavisinde önemli bir engel teşkil eder. FoxM1, meme kanseri gibi malignitelerde sıkça aşırı eksprese edilen ve genotoksik tedavi direnci ile güçlü bir şekilde ilişkili olan bir transkripsiyon faktörüdür. Bu çalışmanın amacı, FoxM1 inhibitörü olan thiostrepton'un (THIO) malign olmayan HUVEC hücreleri ile malign MDA-MB-231 meme kanseri hücrelerinde, DNA hasar yanıtı üzerindeki etkilerini karşılaştırmalı olarak analiz etmektir.
Gereç ve Yöntem: THIO'nun hücre canlılığı üzerine etkileri her iki hücre hattında MTT testi kullanılarak değerlendirildi. Oksidatif DNA hasar seviyeleri 8-OHdG kiti ile ölçülürken, apoptoz seviyeleri Caspase 3 ELISA kiti ile belirlendi. DNA hasar yanıt genlerinin (BRCA-1, DNAPKC, FOXM1, RAD5, MRE11, ve XRCC1) ekspresyon düzeyleri RT-PCR yöntemiyle analiz edildi.
Bulgular: THIO’nun, MDA-MB-231 hücrelerinde HUVEC hücrelerine kıyasla daha belirgin sitotoksik etki gösterdiği gözlendi. HUVEC hücrelerinde THIO, oksidatif DNA hasarında anlamlı bir artışa neden olurken, MDA-MB-231 hücrelerinde bu tür bir etki gözlenmedi. Buna karşın, meme kanseri hücrelerinde Caspase 3 seviyelerinde belirgin bir artış saptandı. RT-PCR analizleri, DNA hasar yanıt genlerinin, özellikle BRCA-1, DNAPKC, MRE11, FOXM1, ve XRCC1’in ekspresyonunda her iki hücre hattında anlamlı bir düşüş olduğunu gösterdi.
Sonuç: THIO, FoxM1 ekspresyonunu inhibe ederek DNA hasar yanıt genlerinin ekspresyonunu baskılamaktadır. Bu durum, THIO’nun DNA onarım yollarını bozarak meme kanseri hücrelerinin tedaviye duyarlılığını artırma potansiyeline sahip olduğunu göstermektedir. Kemoterapi direncinin aşılmasına katkı sağlayabilecek bu bulguların doğrulanması ve THIO’nun terapötik kullanımının araştırılması için ileri çalışmalara ihtiyaç vardır.

Destekleyen Kurum

Giresun Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

SAĞ-BAP-A-250620-65

Kaynakça

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;0(0):1–41.
  • Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC. Vol. 12, Cancers. 2020. p. 916.
  • Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol 2021 192. 2021 Nov 9;19(2):91–113.
  • Nestal de Moraes G, Bella L, Zona S, J. Burton M, W.-F. Lam E. Insights into a Critical Role of the FOXO3a-FOXM1 Axis in DNA Damage Response and Genotoxic Drug Resistance. Curr Drug Targets. 2016 Jan 5;17(2):164–77.
  • Khongkow P, Karunarathna U, Khongkow M, Gong C, Gomes AR, Yagüe E, et al. FOXM1 targets NBS1 to regulate DNA damage-induced senescence and epirubicin resistance. Oncogene. 2014 Aug 21;33(32):4144–55.
  • Tan Y, Raychaudhuri P, Costa RH. Chk2 Mediates Stabilization of the FoxM1 Transcription Factor To Stimulate Expression of DNA Repair Genes. Mol Cell Biol. 2007 Feb 1;27(3):1007–16.
  • Monteiro LJ, Khongkow P, Kongsema M, Morris JR, Man C, Weekes D, et al. The Forkhead Box M1 protein regulates BRIP1 expression and DNA damage repair in epirubicin treatment. Oncogene. 2013;32:4634–45.
  • Zhou J, Wang Y, Wang Y, Yin X, He Y, Chen L, et al. FOXM1 modulates cisplatin sensitivity by regulating EXO1 in ovarian cancer. PLoS One. 2014;9(5).
  • Jiang L, Wang P, Chen L, Chen H. Down-regulation of FoxM1 by thiostrepton or small interfering RNA inhibits proliferation, transformation ability and angiogenesis, and induces apoptosis of nasopharyngeal carcinoma cells. Int J Clin Exp Pathol. 2014;7(9):5450–60.
  • Hegde NS, Sanders DA, Rodriguez R, Balasubramanian S. The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem. 2011;3(9):725–31.
  • Bailly C. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur J Pharmacol. 2022 Jan 5;914(October 2021):174661.
  • Asikaer A, Sun C, Shen Y. Thiostrepton: multifaceted biological activities and its applications in treatment of inflammatory diseases. Inflammopharmacology. 2024 Nov 2;
  • Jiang L, Wu X, Wang P, Wen T, Yu C, Wei L, et al. Targeting FoxM1 by thiostrepton inhibits growth and induces apoptosis of laryngeal squamous cell carcinoma. J Cancer Res Clin Oncol. 2015;141(6):971–81.
  • Kepp O, Kroemer G. Autophagy induction by thiostrepton for the improvement of anticancer therapy. Autophagy. 2020 Jun 2;16(6):1166–7.
  • Dey P, Wang A, Ziegler Y, Kim SH, El-Ashry D, Katzenellenbogen JA, et al. Suppression of Tumor Growth, Metastasis, and Signaling Pathways by Reducing FOXM1 Activity in Triple Negative Breast Cancer. Cancers (Basel). 2020;12:2677.
  • Ziegler Y, Laws MJ, Sanabria Guillen V, Kim SH, Dey P, Smith BP, et al. Suppression of FOXM1 activities and breast cancer growth in vitro and in vivo by a new class of compounds. npj Breast Cancer. 2019 Dec 29;5(1):45.
  • Demirtas Korkmaz F, Dogan Turacli I, Esendagli G, Ekmekci A. Effects of thiostrepton alone or in combination with selumetinib on triple-negative breast cancer metastasis. Mol Biol Rep. 2022 Nov 1;49(11):10387–97.
  • Yang N, Zhou TC, Lei XX, Wang C, Yan M, Wang ZF, et al. Inhibition of sonic hedgehog signaling pathway by Thiazole Antibiotic Thiostrepton Attenuates the CD44+/CD24-stem-like population and sphere-forming capacity in triple-negative breast cancer. Cell Physiol Biochem. 2016;38(3).
  • Cai X, Xiao W, Shen J, Lian H, Lu Y, Liu X, et al. Thiostrepton and miR‑216b synergistically promote osteosarcoma cell cytotoxicity and apoptosis by targeting FoxM1. Oncol Lett. 2020 Dec 1;20(6):1–1.
  • Tan Y, Wang Q, Xie Y, Qiao X, Zhang S, Wang Y, et al. Identification of FOXM1 as a specific marker for triple-negative breast cancer. Int J Oncol. 2019;54(1):87–97.
  • Elsayed Azab A, A Adwas Almokhtar, Ibrahim Elsayed AS, A Adwas A, Ibrahim Elsayed Ata Sedik, Quwaydir FA. Oxidative stress and antioxidant mechanisms in human body. J Appl Biotechnol Bioeng. 2019;6(1).
  • Cadet J, Davies KJA. Oxidative DNA damage & repair: An introduction. Free Radic Biol Med. 2017 Jun;107:2–12.
  • Halasi M, Pandit B, Wang M, Nogueira V, Hay N, Gartel AL. Combination of oxidative stress and foxm1 inhibitors induces apoptosis in cancer cells and inhibits xenograft tumor growth. Am J Pathol. 2013;183(1).
  • Halasi M, Gartel AL. Sa1376 FOXM1 As a Potential Target in Pancreatic Cancer. Gastroenterology. 2014;146(5).
  • Ding S, Li C, Cheng N, Cui X, Xu X, Zhou G. Redox regulation in cancer stem cells. Vol. 2015, Oxidative Medicine and Cellular Longevity. 2015. p. 1–11.
  • Marengo B, Nitti M, Furfaro AL, Colla R, Ciucis C De, Marinari UM, et al. Redox homeostasis and cellular antioxidant systems: Crucial players in cancer growth and therapy. Vol. 2016, Oxidative Medicine and Cellular Longevity. 2016.
  • Kongsema M, Wongkhieo S, Khongkow M, Lam E, Boonnoy P, Vongsangnak W, et al. Molecular mechanism of Forkhead box M1 inhibition by thiostrepton in breast cancer cells. Oncol Rep. 2019 Jul 8;42(3):953–62.
  • Demırtas Korkmaz F, Düzgün Z, Deveci Özkan A. Thiostrepton modulates TLR4 expression and induces apoptosis in MDA MB-231 cells: an in vitro and in silico analysis. Meandros Med Dent J. 2024 Sep 30;25(3):209–21.
  • Kuthethur R, Adiga D, Kandettu A, Jerome MS, Mallya S, Mumbrekar KD, et al. MiR-4521 perturbs FOXM1-mediated DNA damage response in breast cancer. Front Mol Biosci. 2023;10.
  • Wang SP, Wu SQ, Huang SH, Tang YX, Meng LQ, Liu F, et al. FDI-6 inhibits the expression and function of FOXM1 to sensitize BRCA-proficient triple-negative breast cancer cells to Olaparib by regulating cell cycle progression and DNA damage repair. Cell Death Dis. 2021 Dec 8;12(12):1138.
  • Kim MY, Jung AR, Shin D, Kwon H, Cho HJ, Ha US, et al. Niclosamide exerts anticancer effects through inhibition of the FOXM1-mediated DNA damage response in prostate cancer. Am J Cancer Res. 2021;11(6).

FoxM1 inhibition by Thiostrepton downregulates DNA damage response genes, enhancing sensitivity of breast cancer cells to therapy

Yıl 2025, Cilt: 64 Sayı: 2, 223 - 230, 10.06.2025
https://doi.org/10.19161/etd.1603178

Öz

Aim: Chemotherapy resistance, often linked to the development of resistance against genotoxic agents, is a major obstacle in cancer treatment. FoxM1, a transcription factor frequently overexpressed in malignancies such as breast cancer, is strongly associated with genotoxic therapy resistance. The aim of this study is to conduct a comparative analysis of the effects of thiostrepton (THIO), a FoxM1 inhibitor, on the DNA damage response in HUVEC cells (non-malignant) and MDA-MB-231 breast cancer cells (malignant)
Materials and Methods: THIO's impact on cell viability were evaluated in both cell lines using the MTT assay. Oxidative DNA damage levels were measured with the 8-OHdG kit, and apoptosis was assessed using the Caspase 3 ELISA kit. The expression levels of DNA damage response genes (BRCA-1, DNAPKC, FOXM1, RAD51, MRE11 and XRCC1) were analyzed by RT-PCR.
Results: MDA-MB-231 cells exhibited greater sensitivity to the cytotoxic effects of THIO than HUVEC cells. In HUVEC cells, THIO caused a significant increase in oxidative DNA damage, whereas no such effect was observed in MDA-MB-231 cell lines. Conversely, breast cancer cells showed a significant increase in Caspase 3 levels. RT-PCR results revealed a marked downregulation of DNA damage response genes, particularly BRCA-1, DNAPKC, MRE11, FOXM1, and XRCC1, in both cell types.
Conclusion: THIO has been shown to inhibit FoxM1 expression and downregulate DNA damage response genes in both malignant and non-malignant cells, demonstrating its potential to enhance the sensitivity of breast cancer cells to therapy by disrupting DNA repair pathways. However, its potential to induce oxidative damage in non-malignant cells underscores the need for further comprehensive studies to validate its therapeutic efficacy and assess its safety in normal tissues.

Destekleyen Kurum

Scientific Research Projects Coordination Unit of Giresun University

Proje Numarası

SAĞ-BAP-A-250620-65

Kaynakça

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;0(0):1–41.
  • Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC. Vol. 12, Cancers. 2020. p. 916.
  • Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol 2021 192. 2021 Nov 9;19(2):91–113.
  • Nestal de Moraes G, Bella L, Zona S, J. Burton M, W.-F. Lam E. Insights into a Critical Role of the FOXO3a-FOXM1 Axis in DNA Damage Response and Genotoxic Drug Resistance. Curr Drug Targets. 2016 Jan 5;17(2):164–77.
  • Khongkow P, Karunarathna U, Khongkow M, Gong C, Gomes AR, Yagüe E, et al. FOXM1 targets NBS1 to regulate DNA damage-induced senescence and epirubicin resistance. Oncogene. 2014 Aug 21;33(32):4144–55.
  • Tan Y, Raychaudhuri P, Costa RH. Chk2 Mediates Stabilization of the FoxM1 Transcription Factor To Stimulate Expression of DNA Repair Genes. Mol Cell Biol. 2007 Feb 1;27(3):1007–16.
  • Monteiro LJ, Khongkow P, Kongsema M, Morris JR, Man C, Weekes D, et al. The Forkhead Box M1 protein regulates BRIP1 expression and DNA damage repair in epirubicin treatment. Oncogene. 2013;32:4634–45.
  • Zhou J, Wang Y, Wang Y, Yin X, He Y, Chen L, et al. FOXM1 modulates cisplatin sensitivity by regulating EXO1 in ovarian cancer. PLoS One. 2014;9(5).
  • Jiang L, Wang P, Chen L, Chen H. Down-regulation of FoxM1 by thiostrepton or small interfering RNA inhibits proliferation, transformation ability and angiogenesis, and induces apoptosis of nasopharyngeal carcinoma cells. Int J Clin Exp Pathol. 2014;7(9):5450–60.
  • Hegde NS, Sanders DA, Rodriguez R, Balasubramanian S. The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem. 2011;3(9):725–31.
  • Bailly C. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur J Pharmacol. 2022 Jan 5;914(October 2021):174661.
  • Asikaer A, Sun C, Shen Y. Thiostrepton: multifaceted biological activities and its applications in treatment of inflammatory diseases. Inflammopharmacology. 2024 Nov 2;
  • Jiang L, Wu X, Wang P, Wen T, Yu C, Wei L, et al. Targeting FoxM1 by thiostrepton inhibits growth and induces apoptosis of laryngeal squamous cell carcinoma. J Cancer Res Clin Oncol. 2015;141(6):971–81.
  • Kepp O, Kroemer G. Autophagy induction by thiostrepton for the improvement of anticancer therapy. Autophagy. 2020 Jun 2;16(6):1166–7.
  • Dey P, Wang A, Ziegler Y, Kim SH, El-Ashry D, Katzenellenbogen JA, et al. Suppression of Tumor Growth, Metastasis, and Signaling Pathways by Reducing FOXM1 Activity in Triple Negative Breast Cancer. Cancers (Basel). 2020;12:2677.
  • Ziegler Y, Laws MJ, Sanabria Guillen V, Kim SH, Dey P, Smith BP, et al. Suppression of FOXM1 activities and breast cancer growth in vitro and in vivo by a new class of compounds. npj Breast Cancer. 2019 Dec 29;5(1):45.
  • Demirtas Korkmaz F, Dogan Turacli I, Esendagli G, Ekmekci A. Effects of thiostrepton alone or in combination with selumetinib on triple-negative breast cancer metastasis. Mol Biol Rep. 2022 Nov 1;49(11):10387–97.
  • Yang N, Zhou TC, Lei XX, Wang C, Yan M, Wang ZF, et al. Inhibition of sonic hedgehog signaling pathway by Thiazole Antibiotic Thiostrepton Attenuates the CD44+/CD24-stem-like population and sphere-forming capacity in triple-negative breast cancer. Cell Physiol Biochem. 2016;38(3).
  • Cai X, Xiao W, Shen J, Lian H, Lu Y, Liu X, et al. Thiostrepton and miR‑216b synergistically promote osteosarcoma cell cytotoxicity and apoptosis by targeting FoxM1. Oncol Lett. 2020 Dec 1;20(6):1–1.
  • Tan Y, Wang Q, Xie Y, Qiao X, Zhang S, Wang Y, et al. Identification of FOXM1 as a specific marker for triple-negative breast cancer. Int J Oncol. 2019;54(1):87–97.
  • Elsayed Azab A, A Adwas Almokhtar, Ibrahim Elsayed AS, A Adwas A, Ibrahim Elsayed Ata Sedik, Quwaydir FA. Oxidative stress and antioxidant mechanisms in human body. J Appl Biotechnol Bioeng. 2019;6(1).
  • Cadet J, Davies KJA. Oxidative DNA damage & repair: An introduction. Free Radic Biol Med. 2017 Jun;107:2–12.
  • Halasi M, Pandit B, Wang M, Nogueira V, Hay N, Gartel AL. Combination of oxidative stress and foxm1 inhibitors induces apoptosis in cancer cells and inhibits xenograft tumor growth. Am J Pathol. 2013;183(1).
  • Halasi M, Gartel AL. Sa1376 FOXM1 As a Potential Target in Pancreatic Cancer. Gastroenterology. 2014;146(5).
  • Ding S, Li C, Cheng N, Cui X, Xu X, Zhou G. Redox regulation in cancer stem cells. Vol. 2015, Oxidative Medicine and Cellular Longevity. 2015. p. 1–11.
  • Marengo B, Nitti M, Furfaro AL, Colla R, Ciucis C De, Marinari UM, et al. Redox homeostasis and cellular antioxidant systems: Crucial players in cancer growth and therapy. Vol. 2016, Oxidative Medicine and Cellular Longevity. 2016.
  • Kongsema M, Wongkhieo S, Khongkow M, Lam E, Boonnoy P, Vongsangnak W, et al. Molecular mechanism of Forkhead box M1 inhibition by thiostrepton in breast cancer cells. Oncol Rep. 2019 Jul 8;42(3):953–62.
  • Demırtas Korkmaz F, Düzgün Z, Deveci Özkan A. Thiostrepton modulates TLR4 expression and induces apoptosis in MDA MB-231 cells: an in vitro and in silico analysis. Meandros Med Dent J. 2024 Sep 30;25(3):209–21.
  • Kuthethur R, Adiga D, Kandettu A, Jerome MS, Mallya S, Mumbrekar KD, et al. MiR-4521 perturbs FOXM1-mediated DNA damage response in breast cancer. Front Mol Biosci. 2023;10.
  • Wang SP, Wu SQ, Huang SH, Tang YX, Meng LQ, Liu F, et al. FDI-6 inhibits the expression and function of FOXM1 to sensitize BRCA-proficient triple-negative breast cancer cells to Olaparib by regulating cell cycle progression and DNA damage repair. Cell Death Dis. 2021 Dec 8;12(12):1138.
  • Kim MY, Jung AR, Shin D, Kwon H, Cho HJ, Ha US, et al. Niclosamide exerts anticancer effects through inhibition of the FOXM1-mediated DNA damage response in prostate cancer. Am J Cancer Res. 2021;11(6).
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kanser Hücre Biyolojisi, Moleküler Hedefler
Bölüm Araştırma Makaleleri
Yazarlar

Funda Demırtaş Korkmaz 0000-0003-3978-9427

Zekeriya Düzgün 0000-0001-6420-6292

Fadime Mutlu İçduygu 0000-0002-4913-9420

Proje Numarası SAĞ-BAP-A-250620-65
Yayımlanma Tarihi 10 Haziran 2025
Gönderilme Tarihi 18 Aralık 2024
Kabul Tarihi 24 Ocak 2025
Yayımlandığı Sayı Yıl 2025Cilt: 64 Sayı: 2

Kaynak Göster

Vancouver Demırtaş Korkmaz F, Düzgün Z, Mutlu İçduygu F. FoxM1 inhibition by Thiostrepton downregulates DNA damage response genes, enhancing sensitivity of breast cancer cells to therapy. ETD. 2025;64(2):223-30.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519