Araştırma Makalesi
BibTex RIS Kaynak Göster

Maternal trı̇fenı̇l fosfı̇t maruzı̇yetı̇nı̇n nörodavranışsal etkı̇lerı̇: valproı̇k ası̇t modelı̇ ile karşılaştırmalı deneysel bir çalışma

Yıl 2025, Cilt: 64 Sayı: 2, 381 - 389, 10.06.2025
https://doi.org/10.19161/etd.1686034

Öz

Amaç: Nörogelişimsel bozukluklar, embriyonik dönemde ortaya çıkan ve yaşam boyunca devam eden bir veya daha fazla gelişimsel alandaki bozukluklarla karakterize edilmektedir. Nörogelişimsel bozukluklardan biri olan otizm, hayvan modellerinde valproik asit (VPA) ile indüklenebilmektedir. Bu çalışma, nörotoksik bir organofosfor bileşiği olan trifenil fosfit (TPP) ve VPA'ya maternal maruziyetin sonuçlarını nörodavranışsal değişiklikler açısından karşılaştırmak amacıyla planlanmıştır.
Gereç ve Yöntem: Gebe sıçanlar randomize şekilde üç gruba ayrılmıştır: VPA (n=3), TPP (n=3) ve kontrol (n=3). Her gruba embriyonik 12.5. günde intraperitoneal VPA, TPP veya salin (kontrol grubu için) enjeksiyonu yapılmıştır. Erkek yavrular (grup başına n=10) doğum sonrası 33-34. günlerde Üç Odacıklı Sosyal Etkileşim Testi ve Mermer Gömme Testi kullanılarak değerlendirilmiştir. Hayvanlar immünohistokimyasal (IHC) analiz için postnatal 35. günde perfüze edilmiştir.
Bulgular: Üç Odacıklı Sosyal Etkileşim Testi sonuçları; VPA ve TPP gruplarında kontrol grubuna kıyasla sosyal etkileşimde anlamlı bozulmalar olduğunu göstermiştir (p<0.05). Ayrıca, TPP grubunda bilye gömme davranışında anlamlı bir artış saptanmıştır (p<0.05). Histolojik analizler ile kontrol grubunun subgranüler zonunda (SGZ) VPA ve TPP gruplarına göre daha yüksek nestin-pozitif hücre yoğunluğu tespit edilmiştir (p<0.05). Connexin-43 ekspresyonunda, TPP grubunun CA1 bölgesinde kontrol grubuna kıyasla artış bulunmuş (p<0.05) ancak VPA grubunda ise anlamlı bir değişiklik olmamıştır. Sinaptofizin (SYN) ise CA3 bölgesinde kontrol grubunda, VPA ve TPP gruplarına kıyasla daha yüksek eksprese edilmiştir (p<0.05).
Sonuç: Araştırmanın bulguları, TPP'nin maternal maruziyetinde yavruların nörogelişimsel bozukluklar açısından özellikle otizm için riskli olarak değerlendirilebileceğini ortaya koymuştur.

Proje Numarası

18-SBE-003

Kaynakça

  • Maw KJ, Beattie G, Burns EJ. Cognitive strengths in neurodevelopmental disorders, conditions and differences: A critical review. Neuropsychologia 2024;197:108980.
  • Kim E, Huh JR, Choi GB. Prenatal and postnatal neuroimmune interactions in neurodevelopmental disorders. Nat Immunol 2024;25(4):598-606.
  • Croen LA, Ames JL, Qian Y, Alexeeff S, Ashwood P, Gunderson EP, et al. Inflammatory conditions during pregnancy and risk of autism and other neurodevelopmental disorders. Biol Psychiatry Glob Open Sci 2024;4(1):39-50.
  • Doi M, Usui N, Shimada S. Prenatal environment and neurodevelopmental disorders. Front Endocrinol (Lausanne) 2022;13:860110.
  • Scattolin MAA, Resegue RM, Rosário MCD. The impact of the environment on neurodevelopmental disorders in early childhood. J Pediatr (Rio J) 2022;98(Suppl 1):S66-72.
  • Veronesi B, Dvergsten C. Triphenyl phosphite neuropathy differs from organophosphorus-induced delayed neuropathy in rats. Neuropathol Appl Neurobiol 1987;13(3):193-208.
  • Lehning EJ, Tanaka D, Bursian SJ. Triphenyl phosphite and diisopropylphosphorofluoridate produce separate and distinct axonal degeneration patterns in the central nervous system of the rat. Fundam Appl Toxicol 1996;29(1):110-8.
  • Levin ED, Christopher NC, Abou-Donia MB. Triphenyl phosphite-induced impairment of spatial alternation learning. J Toxicol Environ Health 1995;44(4):461-7.
  • Jeste SS. Neurodevelopmental behavioral and cognitive disorders. Continuum (Minneap Minn) 2015;21(3):690-714.
  • Krakowiak P, Walker CK, Bremer AA, Baker AS, Ozonoff S, Hansen RL, et al. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 2012;129(5):e1121-8.
  • Morakotsriwan N, Wattanathorn J, Kirisattayakul W, Chaisiwamongkol K. Autistic-like behaviors, oxidative stress status, and histopathological changes in cerebellum of valproic acid rat model of autism are improved by the combined extract of purple rice and silkworm pupae. Oxid Med Cell Longev 2016;2016:3206561.
  • Wilfert AB, Turner TN, Murali SC, Hsieh PH, Sulovari A, Wang T, et al. Recent ultra-rare inherited variants implicate new autism candidate risk genes. Nat Genet 2021;53(8):1125-34.
  • Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol 2018;299(Pt A):217-27.
  • Schneider T, Przewłocki R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 2005;30(1):80-9.
  • Chomiak T, Turner N, Hu B. What we have learned about autism spectrum disorder from valproic acid. Pathol Res Int 2013;2013:712758. Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol 1996;370(2):247-61.
  • Angoa-Pérez M, Kane MJ, Briggs DI, Francescutti DM, Kuhn DM. Marble burying and nestlet shredding as tests of repetitive, compulsive-like behaviors in mice. J Vis Exp 2013;(82):e50978.
  • Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR. Assessment of social interaction behaviors. J Vis Exp 2011;(48):e2473.
  • Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 7th ed. Amsterdam: Academic Press; 2013.
  • Kim SW, Roh J, Park CS. Immunohistochemistry for pathologists: protocols, pitfalls, and tips. J Pathol Transl Med 2016;50(6):411-8.
  • Kuşçu GC, Gürel Ç, Buhur A, Karabay Yavaşoğlu NÜ, Köse T, Yavaşoğlu A, et al. Fluvastatin alleviates doxorubicin-induced cardiac and renal toxicity in rats via regulation of oxidative stress, inflammation, and apoptosis associated genes expressions. Drug Chem Toxicol 2023;46(2):400-11.
  • Reichard J, Zimmer-Bensch G. The epigenome in neurodevelopmental disorders. Front Neurosci 2021;15:776809.
  • Scott JA, Schumann CM, Goodlin-Jones BL, Amaral DG. A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder. Autism Res 2009;2(5):246–57.
  • Ryu YH, Lee JD, Yoon PH, Kim DI, Lee HB, Shin YJ. Perfusion impairments in infantile autism on technetium-99m ethyl cysteinate dimer brain single-photon emission tomography: comparison with findings on magnetic resonance imaging. Eur J Nucl Med 1999;26(3):253–9.
  • Edgin JO, Pennington BF. Spatial cognition in autism spectrum disorders: superior, impaired, or just intact? J Autism Dev Disord 2005;35(6):729–45.
  • Wass S. Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn 2011;75(1):18–28.
  • DeLong GR. Autism, amnesia, hippocampus, and learning. Neurosci Biobehav Rev 1992;16(1):63–70.
  • Gao J, Wang X, Sun H, Cao Y, Liang S, Wang H, et al. Neuroprotective effects of docosahexaenoic acid on hippocampal cell death and learning and memory impairments in a valproic acid-induced rat autism model. Int J Dev Neurosci 2016;49:67–78.
  • Wu HF, Chen PS, Hsu YT, Lee CW, Wang TF, Chen YJ, et al. D-cycloserine ameliorates autism-like deficits by removing GluA2-containing AMPA receptors in a valproic acid-induced rat model. Mol Neurobiol 2018;55(6):4811–24.
  • Degroote S, Hunting D, Takser L. Periconceptional folate deficiency leads to autism-like traits in Wistar rat offspring. Neurotoxicol Teratol 2018;66:132–8.
  • Dai X, Yin Y, Qin L. Valproic acid exposure decreases the mRNA stability of Bcl-2 via up-regulating miR-34a in the cerebellum of rat. Neurosci Lett 2017;657:159–65.
  • Kim JW, Seung H, Kim KC, Gonzales ELT, Oh HA, Yang SM, et al. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology 2017;113:71–81.
  • Wu H, Wang X, Gao J, Liang S, Hao Y, Sun C, et al. Fingolimod (FTY720) attenuates social deficits, learning and memory impairments, neuronal loss and neuroinflammation in the rat model of autism. Life Sci 2017;173:43–54.
  • Cai Y, Tang X, Chen X, Li X, Wang Y, Bao X, et al. Liver X receptor β regulates the development of the dentate gyrus and autistic-like behavior in the mouse. Proc Natl Acad Sci U S A 2018;115(12):E2725–33.
  • Codagnone MG, Podestá MF, Uccelli NA, Reinés A. Differential local connectivity and neuroinflammation profiles in the medial prefrontal cortex and hippocampus in the valproic acid rat model of autism. Dev Neurosci 2015;37(3):215–31.
  • Fatemi SH, Folsom TD, Reutiman TJ, Lee S. Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse 2008;62(7):501–7.
  • Chávez CE, Oyarzún JE, Avendaño BC, Mellado LA, Inostroza CA, Alvear TF, et al. The opening of connexin 43 hemichannels alters hippocampal astrocyte function and neuronal survival in prenatally LPS-exposed adult offspring. Front Cell Neurosci 2019;13:460.

Neurobehavioral effects of maternal triphenyl phosphite exposure: A comparative experimental study using the valproic acid model

Yıl 2025, Cilt: 64 Sayı: 2, 381 - 389, 10.06.2025
https://doi.org/10.19161/etd.1686034

Öz

Aim: Neurodevelopmental disorders are characterized by impairments in one or more developmental domains originating in the embryonic period and persisting throughout life. Autism, experimentally induced by valproic acid (VPA) in animal models, is a neurodevelopmental disorder. This study aimed to compare the outcomes of maternal exposure to triphenyl phosphite (TPP), a neurotoxic organophosphorus compound, and VPA in terms of neurobehavioral alterations.
Materials and Methods: Pregnant rats were randomly assigned to three groups: VPA (n=3), TPP (n=3), and control (n=3). Each group received an intraperitoneal injection of either VPA, TPP, or saline (for the control group) on embryonic day 12.5. Male offspring (n=10 per group) were evaluated on postnatal days 33–34 using the Marble Burying Test and the Three-Chambered Social Interaction Test. Animals were perfused on postnatal day 35 for immunohistochemical (IHC) analysis.
Results: TPP group exhibited a significant increase in marble burying behavior (p<0.05). Also, Three-Chamber Social Interaction Test revealed significant impairments in social interaction in the VPA and TPP groups compared to the control (p<0.05). Histologic evaluation revealed higher nestin-positive cell density in the subgranular zone of the control group compared to VPA and TPP groups (p<0.05). Synaptophysin expression in the CA3 region was higher in the control group than in the VPA and TPP groups (p<0.05). Connexin-43 expression increased in the CA1 region of the TPP group compared to controls (p<0.05), while no significant change was observed in the VPA group.
Conclusion: Maternal TPP exposure may be regarded as a risk factor for autism-related neurodevelopmental disorders.

Etik Beyan

Approval of the experimental protocol was granted by the Local Ethics Committee for Animal Experiments affiliated with Ege University (Approval No: 2017-081).

Destekleyen Kurum

This work was supported by the Scientific Research Project Coordination of Ege University, İzmir, TURKEY

Proje Numarası

18-SBE-003

Teşekkür

The authors gratefully acknowledge the support provided by the Scientific Research Projects Coordination Unit (BAP) of Ege University, İzmir, Turkey.

Kaynakça

  • Maw KJ, Beattie G, Burns EJ. Cognitive strengths in neurodevelopmental disorders, conditions and differences: A critical review. Neuropsychologia 2024;197:108980.
  • Kim E, Huh JR, Choi GB. Prenatal and postnatal neuroimmune interactions in neurodevelopmental disorders. Nat Immunol 2024;25(4):598-606.
  • Croen LA, Ames JL, Qian Y, Alexeeff S, Ashwood P, Gunderson EP, et al. Inflammatory conditions during pregnancy and risk of autism and other neurodevelopmental disorders. Biol Psychiatry Glob Open Sci 2024;4(1):39-50.
  • Doi M, Usui N, Shimada S. Prenatal environment and neurodevelopmental disorders. Front Endocrinol (Lausanne) 2022;13:860110.
  • Scattolin MAA, Resegue RM, Rosário MCD. The impact of the environment on neurodevelopmental disorders in early childhood. J Pediatr (Rio J) 2022;98(Suppl 1):S66-72.
  • Veronesi B, Dvergsten C. Triphenyl phosphite neuropathy differs from organophosphorus-induced delayed neuropathy in rats. Neuropathol Appl Neurobiol 1987;13(3):193-208.
  • Lehning EJ, Tanaka D, Bursian SJ. Triphenyl phosphite and diisopropylphosphorofluoridate produce separate and distinct axonal degeneration patterns in the central nervous system of the rat. Fundam Appl Toxicol 1996;29(1):110-8.
  • Levin ED, Christopher NC, Abou-Donia MB. Triphenyl phosphite-induced impairment of spatial alternation learning. J Toxicol Environ Health 1995;44(4):461-7.
  • Jeste SS. Neurodevelopmental behavioral and cognitive disorders. Continuum (Minneap Minn) 2015;21(3):690-714.
  • Krakowiak P, Walker CK, Bremer AA, Baker AS, Ozonoff S, Hansen RL, et al. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 2012;129(5):e1121-8.
  • Morakotsriwan N, Wattanathorn J, Kirisattayakul W, Chaisiwamongkol K. Autistic-like behaviors, oxidative stress status, and histopathological changes in cerebellum of valproic acid rat model of autism are improved by the combined extract of purple rice and silkworm pupae. Oxid Med Cell Longev 2016;2016:3206561.
  • Wilfert AB, Turner TN, Murali SC, Hsieh PH, Sulovari A, Wang T, et al. Recent ultra-rare inherited variants implicate new autism candidate risk genes. Nat Genet 2021;53(8):1125-34.
  • Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol 2018;299(Pt A):217-27.
  • Schneider T, Przewłocki R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 2005;30(1):80-9.
  • Chomiak T, Turner N, Hu B. What we have learned about autism spectrum disorder from valproic acid. Pathol Res Int 2013;2013:712758. Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol 1996;370(2):247-61.
  • Angoa-Pérez M, Kane MJ, Briggs DI, Francescutti DM, Kuhn DM. Marble burying and nestlet shredding as tests of repetitive, compulsive-like behaviors in mice. J Vis Exp 2013;(82):e50978.
  • Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR. Assessment of social interaction behaviors. J Vis Exp 2011;(48):e2473.
  • Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 7th ed. Amsterdam: Academic Press; 2013.
  • Kim SW, Roh J, Park CS. Immunohistochemistry for pathologists: protocols, pitfalls, and tips. J Pathol Transl Med 2016;50(6):411-8.
  • Kuşçu GC, Gürel Ç, Buhur A, Karabay Yavaşoğlu NÜ, Köse T, Yavaşoğlu A, et al. Fluvastatin alleviates doxorubicin-induced cardiac and renal toxicity in rats via regulation of oxidative stress, inflammation, and apoptosis associated genes expressions. Drug Chem Toxicol 2023;46(2):400-11.
  • Reichard J, Zimmer-Bensch G. The epigenome in neurodevelopmental disorders. Front Neurosci 2021;15:776809.
  • Scott JA, Schumann CM, Goodlin-Jones BL, Amaral DG. A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder. Autism Res 2009;2(5):246–57.
  • Ryu YH, Lee JD, Yoon PH, Kim DI, Lee HB, Shin YJ. Perfusion impairments in infantile autism on technetium-99m ethyl cysteinate dimer brain single-photon emission tomography: comparison with findings on magnetic resonance imaging. Eur J Nucl Med 1999;26(3):253–9.
  • Edgin JO, Pennington BF. Spatial cognition in autism spectrum disorders: superior, impaired, or just intact? J Autism Dev Disord 2005;35(6):729–45.
  • Wass S. Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn 2011;75(1):18–28.
  • DeLong GR. Autism, amnesia, hippocampus, and learning. Neurosci Biobehav Rev 1992;16(1):63–70.
  • Gao J, Wang X, Sun H, Cao Y, Liang S, Wang H, et al. Neuroprotective effects of docosahexaenoic acid on hippocampal cell death and learning and memory impairments in a valproic acid-induced rat autism model. Int J Dev Neurosci 2016;49:67–78.
  • Wu HF, Chen PS, Hsu YT, Lee CW, Wang TF, Chen YJ, et al. D-cycloserine ameliorates autism-like deficits by removing GluA2-containing AMPA receptors in a valproic acid-induced rat model. Mol Neurobiol 2018;55(6):4811–24.
  • Degroote S, Hunting D, Takser L. Periconceptional folate deficiency leads to autism-like traits in Wistar rat offspring. Neurotoxicol Teratol 2018;66:132–8.
  • Dai X, Yin Y, Qin L. Valproic acid exposure decreases the mRNA stability of Bcl-2 via up-regulating miR-34a in the cerebellum of rat. Neurosci Lett 2017;657:159–65.
  • Kim JW, Seung H, Kim KC, Gonzales ELT, Oh HA, Yang SM, et al. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology 2017;113:71–81.
  • Wu H, Wang X, Gao J, Liang S, Hao Y, Sun C, et al. Fingolimod (FTY720) attenuates social deficits, learning and memory impairments, neuronal loss and neuroinflammation in the rat model of autism. Life Sci 2017;173:43–54.
  • Cai Y, Tang X, Chen X, Li X, Wang Y, Bao X, et al. Liver X receptor β regulates the development of the dentate gyrus and autistic-like behavior in the mouse. Proc Natl Acad Sci U S A 2018;115(12):E2725–33.
  • Codagnone MG, Podestá MF, Uccelli NA, Reinés A. Differential local connectivity and neuroinflammation profiles in the medial prefrontal cortex and hippocampus in the valproic acid rat model of autism. Dev Neurosci 2015;37(3):215–31.
  • Fatemi SH, Folsom TD, Reutiman TJ, Lee S. Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse 2008;62(7):501–7.
  • Chávez CE, Oyarzún JE, Avendaño BC, Mellado LA, Inostroza CA, Alvear TF, et al. The opening of connexin 43 hemichannels alters hippocampal astrocyte function and neuronal survival in prenatally LPS-exposed adult offspring. Front Cell Neurosci 2019;13:460.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hücresel Sinir Sistemi, Merkezi Sinir Sistemi, Sinirbilim (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Petek Bilim 0000-0003-2043-6699

Kübra Çelik 0000-0002-0161-6179

Gurur Garip 0000-0002-2999-477X

Ahmet Giray Yardımcı 0000-0003-0337-1803

Buket Şura Yardımcı 0000-0003-0184-3774

Meral Baka 0000-0003-0497-5254

Proje Numarası 18-SBE-003
Yayımlanma Tarihi 10 Haziran 2025
Gönderilme Tarihi 28 Nisan 2025
Kabul Tarihi 14 Mayıs 2025
Yayımlandığı Sayı Yıl 2025Cilt: 64 Sayı: 2

Kaynak Göster

Vancouver Bilim P, Çelik K, Garip G, Yardımcı AG, Yardımcı BŞ, Baka M. Neurobehavioral effects of maternal triphenyl phosphite exposure: A comparative experimental study using the valproic acid model. ETD. 2025;64(2):381-9.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519