Araştırma Makalesi
BibTex RIS Kaynak Göster

Femur boyun kırıklarında kırık lokalizasyonunun instabilite ile ilişkisi: Biyomekanik çalışma

Yıl 2020, Cilt: 59 Sayı: 3, 160 - 164, 30.09.2020
https://doi.org/10.19161/etd.790442

Öz

Amaç: Femur boyun kırıklarında kırık konfigürasyonu ile instabilite arasında ilişki görülmekte iken kırık lokalizasyonu ile instabilite arasındaki ilişki literatürde yer bulmamıştır. Çalışmamız femur boyun kırıklarında, kırığın femur boyun lokalizasyonu ile instabilite arasındaki ilişkiyi araştırdı. Gereç ve Yöntem: Çalışmamızda 12 adet kompozit sentetik proksimal femur modeline üç farklı lokalizasyondan osteotomi yapıldı. Osteotomi lokalizasyonu; transservikal yerleşim (Grup 2), transservikal yerleşimin 5 mm proksimali (Grup 1=Subkapital), transservikal yerleşimin 5 mm distali (Grup 3=Bazoservikal) olmak üzere üç ayrı lokalizasyondan planlandı. Her femur modeli için Pauwels tip II osteotomi ve iki kanüllü vida ile tespit uygulanarak femur modelleri standardize edildi. Gruplara aksiyel yönde stres (kompresyon) uygulanarak stabilite, biyomekanik parametreler ile incelendi.
Bulgular: Stres/strain eğrileri gruplar içinde paralellik gösterdi (p>0,05). Gruplar arası değerlendirmede stres/strain eğrileri Grup 1’de yüksek gözlenirken, Grup 2 ve Grup 3’te eğrilerde paralel gözlendi. Sentetik kemik modellerinde strain değeri 4 olduğunda basınç ölçümleri; Grup 1’de 500±40 N/mm2, Grup 2’de 370±36 N/mm2, Grup 3’te 380±32 N/mm2 (p=0,000), strain değeri 6 olduğunda basınç ölçümleri; Grup 1’de 700±48 N/mm2, Grup 2’de 520±50 N/mm2, Grup 3’te 510±53 N/mm2 olarak ölçüldü (p=0,000). Grup 1 daha stabil gözlenirken, Grup 2 ile Grup 3 arasında fark gözlenmedi.
Sonuç: Femur boyun kırığı biyomekanik çalışmamızda transservikal ve bazoservikal bölge lokalizasyonlarında benzer stabilite gözlenirken, en proksimaldeki, subkapital bölge kırığının daha stabil olduğu gözlendi.

Kaynakça

  • Shah AK, Eissler J, Radomisli T. Algorithms for the treatment of femoral neck fractures. Clin Orthop 2002; 399: 28- 34.
  • Haidukewych GJ. Intracapsular hip fractures. Surgical treatment of orthopedic trauma, Stannard JP, Schmidt AH, Kregor PJ, Thieme New York, Stuttgart 2007; 539- 61.
  • Jo S, Lee SH, Lee HJ. The correlation between the fracture types and the complications after internal fixation of the femoral neck fractures. Hip & pelvis, 2016; 28 (1): 35-42.
  • Bartonícek J. Pauwels’ classification of femoral neck fractures: correct interpretation of the original. J Orthop Trauma 2001; 15: 358-60.
  • Sağlam N, Küçükdurmaz F, Kıvılcım H, Kurtulmuş T, Şen C, Akpınar F. Femur boyun kırıklarında üç kanüle vida ve minimal invazif antirotator kompresyon vidasının biyomekanik karşılaştırması. Acta Orthop Traumatol Turc 2014; 48 (2): 196-201.
  • Walker E, Mukherjee DP, Ogden AL, Sadasivan KK, Albright JA. A biomechanical study of simulated femoral neck fracture fixation by cannulated screws: effects of placement angle and number of screws. Am J Orthop 2007; 36 (12): 680–4.
  • Mansur H, Alvarez R, Freitas A, Goncalves CB, Ramos MRF. Biomechanical analysis of femoral neck fracture fixation in synthetic bone. Acta ortopedica brasileira 2018; 26 (3): 162-5.
  • Gümüştaş SA, Tosun HB, Ağır İ, Orak MM, Onay T, Okçu G İnstabil femur boyun kırıklarının internal tespitinde vida sayısı ve yöneliminin stabiliteye etkisi. Acta Orthop Traumatol Turc 2014; 48 (6): 628-33.
  • Stoffel K, Zderic I, Gras F, Sommer C, Eberli U, Mueller D, Gueorguiev B Biomechanical evaluation of the femoral neck system in unstable Pauwels III femoral neck fractures: a comparison with the dynamic hip screw and cannulated screws. Journal of orthopaedic trauma 2017; 31 (3): 131-7.
  • Caviglia HA, Osorio PQ, Comando D. Classification and diagnosis of intracapsular fractures of the proximal femur. Clin Orthop 2002; 399: 17-27.
  • Pauwels F. Biomechanics of the normal and diseased hip. New York, Springer-Verlag, 1976; Chapter I; 1-21.
  • Freitas A, Torres GM, Souza ACAM, Maciel RA, Souto DRM, Ferreira GNB. Análise da resistência mecânica de fixação de fratura do colo femoral em osso sintético com DHS e parafuso antirrotatório. Rev Bras Ortop 2014; 49 (6): 586–92.
  • Leighton RK. Fractures of the neck of the femur. In: Bucholz RW, Heckman JD, Court-Brown CM, Ed, editors. Rockwood & Green's fractures in adults. 6th. Lippincott Williams & Wilkins; pp. 1780–1.
  • Li J, Wang M, Zhou J et. al. Optimum Configuration of Cannulated Compression Screws for the Fixation of Unstable Femoral Neck Fractures: Finite Element Analysis Evaluation. Biomed Research International 2018: Article ID 1271762. doi: 10.1155/2018/1271762.
  • Ma JX, Kuang MJ, Xing F et al. Sliding hip screw versus cannulated cancellous screws for fixation of femoral neck fracture in adults: a systematic review. International Journal of Surgery 2018; 52: 89-97.
  • Rivadeneira F, Zillikens MC, De Laet CE et al. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. Journal of Bone and Mineral Research 2007; 22 (11): 1781-90.
  • Turgut A. Kalça eklemi anatomisi ve biyomekaniği. TOTBİD Dergisi 2015: 14: 27-33.
  • Nordin M, Frankel VH. Basic Biomechanics of the Musculoskeletal System 3rd ed. Baltimore: Lippincott Williams & Wilkins; 2001: 203–5.

Correlation between instability and fracture location in femur neck fracture: Biomechanical analysis

Yıl 2020, Cilt: 59 Sayı: 3, 160 - 164, 30.09.2020
https://doi.org/10.19161/etd.790442

Öz

Aim: Fracture configuration is associated with instability in femoral neck fractures but the effect of fracture localization on stability has not been reported in the literature. This study researched the relationship between femoral neck localization and instability in femoral neck fractures. Materials and Methods: In this study, osteotomy was performed on 12 composite synthetic proximal femur models from 3 different locations. Osteotomy location; transcervical location (Group 2), 5 mm proximal of the transcervical location (Group 1=Subcapital), 5 mm distal of the transcervical location (Group 3=Basicervical). Each femur model was standardized by Pauwels Type II osteotomy and fixation with 2 cannulated screws. Stability was tested biomechanically by applying hydraulic press to the groups.
Results: Stress/strain curves were parallel in the groups (p>0.05). While the stress/strain curves between the groups were high in Group 1, the curves in Group 2 and Group 3 were observed parallel. In synthetic bone models, the pressures measurements at strain level 4 were 500±40 N/mm2 in Group 1, 370±36 N/mm2 in Group 2 and 380±32 N/mm2 in Group 3 (p = 0.000). At strain level 6 the values were 700±48 N/mm2 in Group 1.520±50 N/mm2 in Group 2.510±53 N/mm2 in Group 3 (p = 0.000). While Group 1 was more stable, there was no difference between Group 2 and Group 3. Conclusion: In our biomechanical study of femoral neck fracture, similar stability was observed in the transcervical and basicervical localization, whereas proximal sub-capital fractures were more stable.

Kaynakça

  • Shah AK, Eissler J, Radomisli T. Algorithms for the treatment of femoral neck fractures. Clin Orthop 2002; 399: 28- 34.
  • Haidukewych GJ. Intracapsular hip fractures. Surgical treatment of orthopedic trauma, Stannard JP, Schmidt AH, Kregor PJ, Thieme New York, Stuttgart 2007; 539- 61.
  • Jo S, Lee SH, Lee HJ. The correlation between the fracture types and the complications after internal fixation of the femoral neck fractures. Hip & pelvis, 2016; 28 (1): 35-42.
  • Bartonícek J. Pauwels’ classification of femoral neck fractures: correct interpretation of the original. J Orthop Trauma 2001; 15: 358-60.
  • Sağlam N, Küçükdurmaz F, Kıvılcım H, Kurtulmuş T, Şen C, Akpınar F. Femur boyun kırıklarında üç kanüle vida ve minimal invazif antirotator kompresyon vidasının biyomekanik karşılaştırması. Acta Orthop Traumatol Turc 2014; 48 (2): 196-201.
  • Walker E, Mukherjee DP, Ogden AL, Sadasivan KK, Albright JA. A biomechanical study of simulated femoral neck fracture fixation by cannulated screws: effects of placement angle and number of screws. Am J Orthop 2007; 36 (12): 680–4.
  • Mansur H, Alvarez R, Freitas A, Goncalves CB, Ramos MRF. Biomechanical analysis of femoral neck fracture fixation in synthetic bone. Acta ortopedica brasileira 2018; 26 (3): 162-5.
  • Gümüştaş SA, Tosun HB, Ağır İ, Orak MM, Onay T, Okçu G İnstabil femur boyun kırıklarının internal tespitinde vida sayısı ve yöneliminin stabiliteye etkisi. Acta Orthop Traumatol Turc 2014; 48 (6): 628-33.
  • Stoffel K, Zderic I, Gras F, Sommer C, Eberli U, Mueller D, Gueorguiev B Biomechanical evaluation of the femoral neck system in unstable Pauwels III femoral neck fractures: a comparison with the dynamic hip screw and cannulated screws. Journal of orthopaedic trauma 2017; 31 (3): 131-7.
  • Caviglia HA, Osorio PQ, Comando D. Classification and diagnosis of intracapsular fractures of the proximal femur. Clin Orthop 2002; 399: 17-27.
  • Pauwels F. Biomechanics of the normal and diseased hip. New York, Springer-Verlag, 1976; Chapter I; 1-21.
  • Freitas A, Torres GM, Souza ACAM, Maciel RA, Souto DRM, Ferreira GNB. Análise da resistência mecânica de fixação de fratura do colo femoral em osso sintético com DHS e parafuso antirrotatório. Rev Bras Ortop 2014; 49 (6): 586–92.
  • Leighton RK. Fractures of the neck of the femur. In: Bucholz RW, Heckman JD, Court-Brown CM, Ed, editors. Rockwood & Green's fractures in adults. 6th. Lippincott Williams & Wilkins; pp. 1780–1.
  • Li J, Wang M, Zhou J et. al. Optimum Configuration of Cannulated Compression Screws for the Fixation of Unstable Femoral Neck Fractures: Finite Element Analysis Evaluation. Biomed Research International 2018: Article ID 1271762. doi: 10.1155/2018/1271762.
  • Ma JX, Kuang MJ, Xing F et al. Sliding hip screw versus cannulated cancellous screws for fixation of femoral neck fracture in adults: a systematic review. International Journal of Surgery 2018; 52: 89-97.
  • Rivadeneira F, Zillikens MC, De Laet CE et al. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. Journal of Bone and Mineral Research 2007; 22 (11): 1781-90.
  • Turgut A. Kalça eklemi anatomisi ve biyomekaniği. TOTBİD Dergisi 2015: 14: 27-33.
  • Nordin M, Frankel VH. Basic Biomechanics of the Musculoskeletal System 3rd ed. Baltimore: Lippincott Williams & Wilkins; 2001: 203–5.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Yüksel Uğur Yaradılmış 0000-0002-7606-5690

Mustafa Caner Okkaoğlu 0000-0002-9149-1858

Pınar Huri 0000-0002-4912-0447

Abdullah Eyidoğan 0000-0003-1656-9990

İsmail Demirkale 0000-0001-7230-1599

Murat Altay 0000-0002-1898-3733

Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 3 Ağustos 2019
Yayımlandığı Sayı Yıl 2020Cilt: 59 Sayı: 3

Kaynak Göster

Vancouver Yaradılmış YU, Okkaoğlu MC, Huri P, Eyidoğan A, Demirkale İ, Altay M. Femur boyun kırıklarında kırık lokalizasyonunun instabilite ile ilişkisi: Biyomekanik çalışma. ETD. 2020;59(3):160-4.

1724617243172472652917240      26515    

 26507    26508 26517265142651826513

2652026519